Multimodal 2D Ferroelectric Transistor with Integrated Perception-and-Computing-in-Memory Functions for Reservoir Computing

IF 9.6 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nano Letters Pub Date : 2024-11-11 DOI:10.1021/acs.nanolett.4c05071
Jiachao Zhou, Anzhe Chen, Yishu Zhang, Xinwei Zhang, Jian Chai, Jiayang Hu, Hanxi Li, Yang Xu, Xulang Liu, Ning Tan, Fei Xue, Bin Yu
{"title":"Multimodal 2D Ferroelectric Transistor with Integrated Perception-and-Computing-in-Memory Functions for Reservoir Computing","authors":"Jiachao Zhou, Anzhe Chen, Yishu Zhang, Xinwei Zhang, Jian Chai, Jiayang Hu, Hanxi Li, Yang Xu, Xulang Liu, Ning Tan, Fei Xue, Bin Yu","doi":"10.1021/acs.nanolett.4c05071","DOIUrl":null,"url":null,"abstract":"Emerging neuromorphic hardware promises energy-efficient computing by colocating multiple essential functions at the individual component level. The implementation is challenging due to mismatch between the characteristics of multifunctional devices and neural networks. Here, we demonstrate an artificial synapse based on a 2D α-phase indium selenide that exhibits integrated perception-and-computing-in-memory functions in a single-transistor setup, serving as a basic building block for reservoir computing. Extending to the array architecture enables concurrent image-sensing and memory. Further, we implement multimode deep-reservoir computing with adjustable nonlinear transformation and multisensory fusion using this core device. In the lane-keeping-assistance task for an unmanned vehicle, the system demonstrates ∼10<sup>4</sup> times lower energy consumption and significantly boosted data throughput compared to the state-of-the-art graphics processors. The demonstrated perception-and-computing-in-memory (PCIM) functions at a single-transistor level shows the feasibility of implementing ultrascalable, resource-efficient hardware for brain-inspired computing.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c05071","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Emerging neuromorphic hardware promises energy-efficient computing by colocating multiple essential functions at the individual component level. The implementation is challenging due to mismatch between the characteristics of multifunctional devices and neural networks. Here, we demonstrate an artificial synapse based on a 2D α-phase indium selenide that exhibits integrated perception-and-computing-in-memory functions in a single-transistor setup, serving as a basic building block for reservoir computing. Extending to the array architecture enables concurrent image-sensing and memory. Further, we implement multimode deep-reservoir computing with adjustable nonlinear transformation and multisensory fusion using this core device. In the lane-keeping-assistance task for an unmanned vehicle, the system demonstrates ∼104 times lower energy consumption and significantly boosted data throughput compared to the state-of-the-art graphics processors. The demonstrated perception-and-computing-in-memory (PCIM) functions at a single-transistor level shows the feasibility of implementing ultrascalable, resource-efficient hardware for brain-inspired computing.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
集成感知和内存计算功能的多模态二维铁电晶体管,用于水库计算
新兴的神经形态硬件有望通过在单个组件层面集中多种基本功能来实现高能效计算。由于多功能器件和神经网络的特性不匹配,实现起来具有挑战性。在这里,我们展示了一种基于二维α相硒化铟的人工突触,它在单晶体管设置中实现了集成感知和计算内存功能,可作为水库计算的基本构件。扩展到阵列架构后,可同时实现图像感应和内存。此外,我们还利用这一核心器件实现了具有可调非线性变换和多感官融合功能的多模式深度水库计算。在无人驾驶车辆的车道保持辅助任务中,与最先进的图形处理器相比,该系统的能耗降低了104倍,数据吞吐量显著提高。在单晶体管水平上展示的感知和内存计算(PCIM)功能表明,为脑启发计算实现可超ascal化、资源节约型硬件是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
期刊最新文献
Highly Monodisperse Stable Gold Nanorod Powder for Optical Sensor High-Performance Radiative Cooling Sunscreen Time-Domain-Filtered Terahertz Nanoscopy of Intrinsic Light–Matter Interactions Regulating Li2S Deposition and Accelerating Conversion Kinetics through Intracavity ZnS toward Low-Temperature Lithium–Sulfur Batteries Identifying the Role of Interfacial Long-Range Order in Regulating the Solid Electrolyte Interphase in Lithium Metal Batteries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1