Pinning effect of lattice Pb suppressing lattice oxygen reactivity of Pb-RuO2 enables stable industrial-level electrolysis

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2024-11-12 DOI:10.1038/s41467-024-53905-y
Chenhui Zhou, Lu Li, Zhaoqi Dong, Fan Lv, Hongyu Guo, Kai Wang, Menggang Li, Zhengyi Qian, Na Ye, Zheng Lin, Mingchuan Luo, Shaojun Guo
{"title":"Pinning effect of lattice Pb suppressing lattice oxygen reactivity of Pb-RuO2 enables stable industrial-level electrolysis","authors":"Chenhui Zhou, Lu Li, Zhaoqi Dong, Fan Lv, Hongyu Guo, Kai Wang, Menggang Li, Zhengyi Qian, Na Ye, Zheng Lin, Mingchuan Luo, Shaojun Guo","doi":"10.1038/s41467-024-53905-y","DOIUrl":null,"url":null,"abstract":"<p>Ruthenium (Ru) is widely recognized as a low-cost alternative to iridium as anode electrocatalyst in proton-exchange membrane water electrolyzers (PEMWE). However, the reported Ru-based catalysts usually only operate within tens of hours in PEMWE because of their intrinsically high reactivity of lattice oxygen that leads to irrepressible Ru leaching and structural collapse. Herein, we report a design concept by employing large-sized and acid-resistant lattice lead (Pb) as a second element to induce a pinning effect for effectively narrowing the moving channels of oxygen atoms, thereby lowering the reactivity of lattice oxygen in Ru oxides. The Pb-RuO<sub>2</sub> catalyst presents a low overpotential of 188 ± 2 mV at 10 mA cm<sup>−2</sup> and can sustain for over 1100 h in an acid medium with a negligible degradation rate of 19 μV h<sup>−1</sup>. Particularly, the Pb-RuO<sub>2</sub>-based PEMWE can operate for more than 250 h at 500 mA cm<sup>−2</sup> with a low degradation rate of only 17 μV h<sup>−1</sup>. Experimental and theoretical calculation results reveal that Ru-O covalency is reduced due to the unique 6<i>s</i>−2<i>p</i>−4<i>d</i> orbital hybridization, which increases the loss energy of lattice oxygen and suppresses the over-oxidation of Ru for improved long-term stability in PEMWE.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"19 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-53905-y","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Ruthenium (Ru) is widely recognized as a low-cost alternative to iridium as anode electrocatalyst in proton-exchange membrane water electrolyzers (PEMWE). However, the reported Ru-based catalysts usually only operate within tens of hours in PEMWE because of their intrinsically high reactivity of lattice oxygen that leads to irrepressible Ru leaching and structural collapse. Herein, we report a design concept by employing large-sized and acid-resistant lattice lead (Pb) as a second element to induce a pinning effect for effectively narrowing the moving channels of oxygen atoms, thereby lowering the reactivity of lattice oxygen in Ru oxides. The Pb-RuO2 catalyst presents a low overpotential of 188 ± 2 mV at 10 mA cm−2 and can sustain for over 1100 h in an acid medium with a negligible degradation rate of 19 μV h−1. Particularly, the Pb-RuO2-based PEMWE can operate for more than 250 h at 500 mA cm−2 with a low degradation rate of only 17 μV h−1. Experimental and theoretical calculation results reveal that Ru-O covalency is reduced due to the unique 6s−2p−4d orbital hybridization, which increases the loss energy of lattice oxygen and suppresses the over-oxidation of Ru for improved long-term stability in PEMWE.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
晶格铅的引脚效应抑制了 Pb-RuO2 的晶格氧反应性,实现了工业级稳定电解
钌(Ru)作为质子交换膜水电解槽(PEMWE)中阳极电催化剂的一种低成本替代品,已得到广泛认可。然而,已报道的 Ru 基催化剂通常只能在 PEMWE 中运行几十个小时,这是因为它们对晶格氧固有的高反应活性会导致不可抑制的 Ru 沥滤和结构崩溃。在此,我们报告了一种设计理念,即采用大尺寸且耐酸的晶格铅(Pb)作为第二元素,以诱导引脚效应,有效缩小氧原子的移动通道,从而降低 Ru 氧化物中晶格氧的反应活性。在 10 mA cm-2 的条件下,Pb-RuO2 催化剂具有 188 ± 2 mV 的低过电位,在酸性介质中可维持 1100 小时以上,降解率为 19 μV h-1,几乎可以忽略不计。特别是基于 Pb-RuO2 的 PEMWE,在 500 mA cm-2 的条件下可工作 250 小时以上,降解率仅为 17 μV h-1。实验和理论计算结果表明,由于独特的 6s-2p-4d 轨道杂化,Ru-O 共价性降低,从而增加了晶格氧的损耗能,抑制了 Ru 的过氧化,提高了 PEMWE 的长期稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称
产品信息
阿拉丁
Lead nitrate (Pb(NO3)2)
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
Breaking dense integration limits: inverse-designed lithium niobate multimode photonic circuits. Chromatin remodeling factor BAF155 coordinates oligodendroglial-neuronal communications linked to regional myelination and autism-like behavioral deficits in mice Targeted antisense oligonucleotide treatment rescues developmental alterations in spinal muscular atrophy organoids TMEM120A maintains adipose tissue lipid homeostasis through ER CoA channeling HIF-1α-mediated feedback prevents TOR signalling from depleting oxygen supply and triggering stress during normal development
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1