Quancheng Liu , Xinna Jiang , Fan Wang , Shuxiang Fan , Baoqing Zhu , Lei Yan , Yun Chen , Yuqing Wei , Wanqiang Chen
{"title":"Evaluation and process monitoring of jujube hot air drying using hyperspectral imaging technology and deep learning for quality parameters","authors":"Quancheng Liu , Xinna Jiang , Fan Wang , Shuxiang Fan , Baoqing Zhu , Lei Yan , Yun Chen , Yuqing Wei , Wanqiang Chen","doi":"10.1016/j.foodchem.2024.141999","DOIUrl":null,"url":null,"abstract":"<div><div>Timely and effective detection of quality attributes during drying control is essential for enhancing the quality of fruit processing. Consequently, this study aims to employ hyperspectral imaging technology for the non-destructive monitoring of soluble solids content (SSC), titratable acidity (TA), moisture, and hardness in jujubes during hot air drying. Quality parameters were measured at drying temperatures of 55 °C, 60 °C, and 65 °C. A deep learning model (CNN_BiLSTM_SE) was developed, incorporating a convolutioyounal neural network (CNN), bidirectional long short-term memory (BiLSTM), and a squeeze-and-excitation (SE) attention mechanism. The performance of PLSR, SVR, and CNN_BiLSTM_SE was compared using different preprocessing methods (MSC, Baseline, and MSC_1st). The CNN_BiLSTM_SE model, optimized for hyperparameters, outperforms PLSR and SVR in predicting jujube quality attributes. Subsequently, these best prediction models were used to predict quality attributes at the pixel level for jujube, enabling the visualization of the Spatio-temporal distribution of these parameters at different drying stages.</div></div>","PeriodicalId":318,"journal":{"name":"Food Chemistry","volume":"467 ","pages":"Article 141999"},"PeriodicalIF":9.8000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0308814624036495","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Timely and effective detection of quality attributes during drying control is essential for enhancing the quality of fruit processing. Consequently, this study aims to employ hyperspectral imaging technology for the non-destructive monitoring of soluble solids content (SSC), titratable acidity (TA), moisture, and hardness in jujubes during hot air drying. Quality parameters were measured at drying temperatures of 55 °C, 60 °C, and 65 °C. A deep learning model (CNN_BiLSTM_SE) was developed, incorporating a convolutioyounal neural network (CNN), bidirectional long short-term memory (BiLSTM), and a squeeze-and-excitation (SE) attention mechanism. The performance of PLSR, SVR, and CNN_BiLSTM_SE was compared using different preprocessing methods (MSC, Baseline, and MSC_1st). The CNN_BiLSTM_SE model, optimized for hyperparameters, outperforms PLSR and SVR in predicting jujube quality attributes. Subsequently, these best prediction models were used to predict quality attributes at the pixel level for jujube, enabling the visualization of the Spatio-temporal distribution of these parameters at different drying stages.
期刊介绍:
Food Chemistry publishes original research papers dealing with the advancement of the chemistry and biochemistry of foods or the analytical methods/ approach used. All papers should focus on the novelty of the research carried out.