Evaluation and process monitoring of jujube hot air drying using hyperspectral imaging technology and deep learning for quality parameters

IF 9.8 1区 农林科学 Q1 CHEMISTRY, APPLIED Food Chemistry Pub Date : 2024-11-12 DOI:10.1016/j.foodchem.2024.141999
Quancheng Liu , Xinna Jiang , Fan Wang , Shuxiang Fan , Baoqing Zhu , Lei Yan , Yun Chen , Yuqing Wei , Wanqiang Chen
{"title":"Evaluation and process monitoring of jujube hot air drying using hyperspectral imaging technology and deep learning for quality parameters","authors":"Quancheng Liu ,&nbsp;Xinna Jiang ,&nbsp;Fan Wang ,&nbsp;Shuxiang Fan ,&nbsp;Baoqing Zhu ,&nbsp;Lei Yan ,&nbsp;Yun Chen ,&nbsp;Yuqing Wei ,&nbsp;Wanqiang Chen","doi":"10.1016/j.foodchem.2024.141999","DOIUrl":null,"url":null,"abstract":"<div><div>Timely and effective detection of quality attributes during drying control is essential for enhancing the quality of fruit processing. Consequently, this study aims to employ hyperspectral imaging technology for the non-destructive monitoring of soluble solids content (SSC), titratable acidity (TA), moisture, and hardness in jujubes during hot air drying. Quality parameters were measured at drying temperatures of 55 °C, 60 °C, and 65 °C. A deep learning model (CNN_BiLSTM_SE) was developed, incorporating a convolutioyounal neural network (CNN), bidirectional long short-term memory (BiLSTM), and a squeeze-and-excitation (SE) attention mechanism. The performance of PLSR, SVR, and CNN_BiLSTM_SE was compared using different preprocessing methods (MSC, Baseline, and MSC_1st). The CNN_BiLSTM_SE model, optimized for hyperparameters, outperforms PLSR and SVR in predicting jujube quality attributes. Subsequently, these best prediction models were used to predict quality attributes at the pixel level for jujube, enabling the visualization of the Spatio-temporal distribution of these parameters at different drying stages.</div></div>","PeriodicalId":318,"journal":{"name":"Food Chemistry","volume":"467 ","pages":"Article 141999"},"PeriodicalIF":9.8000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0308814624036495","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Timely and effective detection of quality attributes during drying control is essential for enhancing the quality of fruit processing. Consequently, this study aims to employ hyperspectral imaging technology for the non-destructive monitoring of soluble solids content (SSC), titratable acidity (TA), moisture, and hardness in jujubes during hot air drying. Quality parameters were measured at drying temperatures of 55 °C, 60 °C, and 65 °C. A deep learning model (CNN_BiLSTM_SE) was developed, incorporating a convolutioyounal neural network (CNN), bidirectional long short-term memory (BiLSTM), and a squeeze-and-excitation (SE) attention mechanism. The performance of PLSR, SVR, and CNN_BiLSTM_SE was compared using different preprocessing methods (MSC, Baseline, and MSC_1st). The CNN_BiLSTM_SE model, optimized for hyperparameters, outperforms PLSR and SVR in predicting jujube quality attributes. Subsequently, these best prediction models were used to predict quality attributes at the pixel level for jujube, enabling the visualization of the Spatio-temporal distribution of these parameters at different drying stages.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用高光谱成像技术和深度学习对红枣热风干燥的质量参数进行评估和过程监控
在干燥控制过程中及时有效地检测质量属性对提高水果加工质量至关重要。因此,本研究旨在采用高光谱成像技术,对热风干燥过程中大枣的可溶性固形物含量(SSC)、可滴定酸度(TA)、水分和硬度进行非破坏性监测。质量参数是在 55 ℃、60 ℃ 和 65 ℃ 的干燥温度下测量的。开发了一个深度学习模型(CNN_BiLSTM_SE),其中包含一个卷积神经网络(CNN)、双向长短期记忆(BiLSTM)和一个挤压-激发(SE)注意机制。使用不同的预处理方法(MSC、Baseline 和 MSC_1st)比较了 PLSR、SVR 和 CNN_BiLSTM_SE 的性能。经过超参数优化的 CNN_BiLSTM_SE 模型在预测红枣质量属性方面优于 PLSR 和 SVR。随后,这些最佳预测模型被用于预测红枣像素级的质量属性,从而使这些参数在不同干燥阶段的时空分布可视化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Food Chemistry
Food Chemistry 工程技术-食品科技
CiteScore
16.30
自引率
10.20%
发文量
3130
审稿时长
122 days
期刊介绍: Food Chemistry publishes original research papers dealing with the advancement of the chemistry and biochemistry of foods or the analytical methods/ approach used. All papers should focus on the novelty of the research carried out.
期刊最新文献
Minimizing spice usage while retaining flavor signatures of spiced pork via integrative flavoromics and sensory evaluation. Lab-on-a-fruit: an approach for chemical evaluation of olive oil composition prior to extraction Metabolomic modelling of sensory characteristics and consumer liking in papaya fruit Hydroxytyrosol-loaded zein nanoparticles: A green formulation for pharma/nutraceutical applications Effects of different fat addition amounts on the temporal dominance of sensations (TDS), texture characteristics and flavor of pork chip snacks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1