Tong Wu, Xueqian Zhang, Quan Xu, Lehui Wang, Yao Li, Xiaohan Jiang, Qingwei Wang, Weili Zhang, Jiaguang Han
{"title":"Heterogeneous-Gradient Supercell Metasurfaces for Independent Complex Amplitude Control over Multiple Diffraction Channels","authors":"Tong Wu, Xueqian Zhang, Quan Xu, Lehui Wang, Yao Li, Xiaohan Jiang, Qingwei Wang, Weili Zhang, Jiaguang Han","doi":"10.1002/smll.202407303","DOIUrl":null,"url":null,"abstract":"The ability to achieve independent complex amplitude control across multiple channels can significantly increase the information capacity of photonic devices. Diffraction inherently holds numerous channels, which are good candidates for dense light manipulation in angular space. However, no convenient method is currently available for attaining this. Here, a flexible interference approach utilizing silicon-based transmission-type heterogeneous-gradient supercell metasurfaces is proposed. By simply designing the phases of the meta-atoms’ radiations within a supercell, the complex amplitude of each diffraction channel can be individually and analytically controlled. Crucially, the complex amplitudes of multiple diffraction channels can be simultaneously controlled in a non-interleaved manner, where the number of channels is determined by the number of effective adjusting degrees of freedom (DoF). As a proof-of-concept validation, several meta-devices are experimentally demonstrated in the terahertz regime, which can generate multiple vortex beams, focal points, and splitting beams in different desired diffraction angles. This advancement heralds a new pathway for the development of multifunctional photonic devices with enhanced channel capacity, offering significant potential for both research and practical applications in photonics.","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":"4 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Neuroscience","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202407303","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The ability to achieve independent complex amplitude control across multiple channels can significantly increase the information capacity of photonic devices. Diffraction inherently holds numerous channels, which are good candidates for dense light manipulation in angular space. However, no convenient method is currently available for attaining this. Here, a flexible interference approach utilizing silicon-based transmission-type heterogeneous-gradient supercell metasurfaces is proposed. By simply designing the phases of the meta-atoms’ radiations within a supercell, the complex amplitude of each diffraction channel can be individually and analytically controlled. Crucially, the complex amplitudes of multiple diffraction channels can be simultaneously controlled in a non-interleaved manner, where the number of channels is determined by the number of effective adjusting degrees of freedom (DoF). As a proof-of-concept validation, several meta-devices are experimentally demonstrated in the terahertz regime, which can generate multiple vortex beams, focal points, and splitting beams in different desired diffraction angles. This advancement heralds a new pathway for the development of multifunctional photonic devices with enhanced channel capacity, offering significant potential for both research and practical applications in photonics.
期刊介绍:
ACS Chemical Neuroscience publishes high-quality research articles and reviews that showcase chemical, quantitative biological, biophysical and bioengineering approaches to the understanding of the nervous system and to the development of new treatments for neurological disorders. Research in the journal focuses on aspects of chemical neurobiology and bio-neurochemistry such as the following:
Neurotransmitters and receptors
Neuropharmaceuticals and therapeutics
Neural development—Plasticity, and degeneration
Chemical, physical, and computational methods in neuroscience
Neuronal diseases—basis, detection, and treatment
Mechanism of aging, learning, memory and behavior
Pain and sensory processing
Neurotoxins
Neuroscience-inspired bioengineering
Development of methods in chemical neurobiology
Neuroimaging agents and technologies
Animal models for central nervous system diseases
Behavioral research