Sulfurized Composite Interphase Enables a Highly Reversible Zn Anode

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2024-11-11 DOI:10.1002/anie.202419495
Lu Wu, Hao Yuan, Yongkang An, Jianguo Sun, Yu Liu, Han Tang, Wei Yang, Lianmeng Cui, Jinghao Li, Qinyou An, Yong-Wei Zhang, Lin Xu, Liqiang Mai
{"title":"Sulfurized Composite Interphase Enables a Highly Reversible Zn Anode","authors":"Lu Wu, Hao Yuan, Yongkang An, Jianguo Sun, Yu Liu, Han Tang, Wei Yang, Lianmeng Cui, Jinghao Li, Qinyou An, Yong-Wei Zhang, Lin Xu, Liqiang Mai","doi":"10.1002/anie.202419495","DOIUrl":null,"url":null,"abstract":"The stability and reversibility of Zn anode can be greatly improved by in-situ construction of solid electrolyte interphase (SEI) on Zn surface via a low-cost design strategy of ZnSO4 electrolyte. However, the role of hydrogen bond acceptor -SO3 accompanying ZnS formation during SEI reconstruction is overlooked. In this work, we have explored and revealed the new role of -SO3 and ZnS in the in-situ formed sulfide composite SEI (SCSEI) on Zn anode electrochemistry in ZnSO4 aqueous electrolytes. Structure characterization and DFT demonstrate that the introduction of -SO3 can not only reduce the dehydration energy of [Zn(H2O)6]2+, but also enhance the stability of the ZnS/Zn interface and homogenize the ZnS/Zn interface electric field, thereby significantly improving the dynamic kinetics and uniform deposition of Zn2+. Owing to the synergistic effect of ZnS and -SO3, a high cycling stability of 1500 h with a cumulative-plated capacity of 7.5 Ah cm-2 at 10 mA cm-2 has been achieved within the symmetrical cell. Furthermore, the full cell with NH4V4O10 cathode exhibits outstanding cyclic stability, exceeding 2000 cycles at 5 A g-1 and maintaining a Coulombic efficiency of 100%. These new insights into anionic synergistic strategy could significantly enhance the practical application of zinc-ion batteries.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":null,"pages":null},"PeriodicalIF":16.1000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202419495","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The stability and reversibility of Zn anode can be greatly improved by in-situ construction of solid electrolyte interphase (SEI) on Zn surface via a low-cost design strategy of ZnSO4 electrolyte. However, the role of hydrogen bond acceptor -SO3 accompanying ZnS formation during SEI reconstruction is overlooked. In this work, we have explored and revealed the new role of -SO3 and ZnS in the in-situ formed sulfide composite SEI (SCSEI) on Zn anode electrochemistry in ZnSO4 aqueous electrolytes. Structure characterization and DFT demonstrate that the introduction of -SO3 can not only reduce the dehydration energy of [Zn(H2O)6]2+, but also enhance the stability of the ZnS/Zn interface and homogenize the ZnS/Zn interface electric field, thereby significantly improving the dynamic kinetics and uniform deposition of Zn2+. Owing to the synergistic effect of ZnS and -SO3, a high cycling stability of 1500 h with a cumulative-plated capacity of 7.5 Ah cm-2 at 10 mA cm-2 has been achieved within the symmetrical cell. Furthermore, the full cell with NH4V4O10 cathode exhibits outstanding cyclic stability, exceeding 2000 cycles at 5 A g-1 and maintaining a Coulombic efficiency of 100%. These new insights into anionic synergistic strategy could significantly enhance the practical application of zinc-ion batteries.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
硫化复合材料相间层可实现高度可逆的锌阳极
通过低成本的 ZnSO4 电解质设计策略在锌表面原位构建固体电解质相(SEI),可以大大提高锌阳极的稳定性和可逆性。然而,在 SEI 重构过程中,伴随 ZnS 形成的氢键受体 -SO3 的作用却被忽视了。在这项研究中,我们探索并揭示了 -SO3 和 ZnS 在 ZnSO4 水电解质中原位形成的硫化物复合 SEI(SCSEI)对锌阳极电化学的新作用。结构表征和 DFT 证明,引入 -SO3 不仅能降低 [Zn(H2O)6]2+ 的脱水能,还能增强 ZnS/Zn 界面的稳定性并均匀化 ZnS/Zn 界面电场,从而显著改善 Zn2+ 的动态动力学和均匀沉积。由于 ZnS 和 -SO3 的协同作用,对称电池实现了 1500 小时的高循环稳定性,在 10 mA cm-2 电流条件下的累积电镀容量达到 7.5 Ah cm-2。此外,采用 NH4V4O10 阴极的全电池也表现出出色的循环稳定性,在 5 A g-1 的条件下,循环次数超过 2000 次,库仑效率保持在 100%。这些关于阴离子协同策略的新见解将极大地促进锌离子电池的实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
Precise Manipulation of Electron Transfers in Clustered Five Redox Sites. A Strep-Tag Imprinted Polymer Platform for Heterogenous Bio(electro)catalysis. Delocalized Orbitals over Metal Clusters and Organic Linkers Enable Boosted Charge Transfer in Metal-Organic Framework for Overall CO2 Photoreduction. Directional Electron Flow in a Selenoviologen-Based Tetracationic Cyclophane for Enhanced Visible-Light-Driven Hydrogen Evolution. Fully sp2 Carbon-Conjugated Covalent Organic Frameworks with Multiple Active Sites for Advanced Lithium-Ion Battery Cathodes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1