Risa Ebihara, Takahiro Nakama, Ken Morishima, Maho Yagi-Utsumi, Masaaki Sugiyama, Daishi Fujita, Sota Sato, Makoto Fujita
{"title":"Physical Isolation of Single Protein Molecules within Well-Defined Coordination Cages to Enhance Their Stability","authors":"Risa Ebihara, Takahiro Nakama, Ken Morishima, Maho Yagi-Utsumi, Masaaki Sugiyama, Daishi Fujita, Sota Sato, Makoto Fujita","doi":"10.1002/anie.202419476","DOIUrl":null,"url":null,"abstract":"Encapsulation of a single protein within a confined space can lead to distinct properties compared to bulk solutions, but controlling the number of encapsulated proteins and their environment remains challenging. This study demonstrates the encapsulation of single proteins within well-defined, tunable cavities of self-assembled coordination cages, thereby enhancing protein stability. Within uniform cavities of size-tunable coordination cages, 15 different proteins of varying sizes (3-6 nm in diameter) and properties (e.g., isoelectric points and hydrophobicity) were successfully confined. Various analytical techniques confirmed that the proteins maintained their secondary structures and enzymatic activities under denaturing conditions such as exposure to organic solvents, heat, and buffers. These findings suggest that such coordination cages have the potential to serve as synthetic hosts for precisely controlling protein functions within their customizable cavities.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"29 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202419476","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Encapsulation of a single protein within a confined space can lead to distinct properties compared to bulk solutions, but controlling the number of encapsulated proteins and their environment remains challenging. This study demonstrates the encapsulation of single proteins within well-defined, tunable cavities of self-assembled coordination cages, thereby enhancing protein stability. Within uniform cavities of size-tunable coordination cages, 15 different proteins of varying sizes (3-6 nm in diameter) and properties (e.g., isoelectric points and hydrophobicity) were successfully confined. Various analytical techniques confirmed that the proteins maintained their secondary structures and enzymatic activities under denaturing conditions such as exposure to organic solvents, heat, and buffers. These findings suggest that such coordination cages have the potential to serve as synthetic hosts for precisely controlling protein functions within their customizable cavities.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.