Electrochemical PET recycling to formate through ethylene glycol oxidation on Ni-Co-S nanosheet arrays

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Journal of Materials Chemistry A Pub Date : 2024-11-12 DOI:10.1039/d4ta07156e
Yi Ma, Luming Li, Jialing Tang, Zongkun Hu, Yong Zhang, Ning Jian, Huan Ge, Jun Zhao, Andreu Cabot, Junshan Li
{"title":"Electrochemical PET recycling to formate through ethylene glycol oxidation on Ni-Co-S nanosheet arrays","authors":"Yi Ma, Luming Li, Jialing Tang, Zongkun Hu, Yong Zhang, Ning Jian, Huan Ge, Jun Zhao, Andreu Cabot, Junshan Li","doi":"10.1039/d4ta07156e","DOIUrl":null,"url":null,"abstract":"Plastics have become an integral part of modern society due to their excellent mechanical properties, lightweight, chemical stability and low cost. However, their continuous production and use worldwide have resulted in a major environmental problem. In this context, the green degradation and upcycling of waste plastics using electrochemical oxidation present a promising solution. To make this solution practical, the development of cost-effective catalysts optimized for this reaction is essential. In this study, we propose a new catalyst for the electrocatalytic reforming of ethylene glycol (EG) derived from polyethylene terephthalate (PET) to formic acid. The catalyst comprises layered Ni-Co9S8 nanosheet arrays (NSAs) grown on nickel foam (NF) via hydrothermal method. Under EG oxidation reaction (EGOR) conditions, the Ni-Co9S8 NSAs/NF catalyst achieves Faraday efficiencies (FEs) of up to 92%. Additionally, the direct use of commercial PET plastic powder hydrolysate still enables FEs to formate to exceed 90%. These outstanding results are rationalized using density functional theory (DFT) calculations providing insights into the role of the different elements in the EGOR reaction.","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":"2 1","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4ta07156e","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Plastics have become an integral part of modern society due to their excellent mechanical properties, lightweight, chemical stability and low cost. However, their continuous production and use worldwide have resulted in a major environmental problem. In this context, the green degradation and upcycling of waste plastics using electrochemical oxidation present a promising solution. To make this solution practical, the development of cost-effective catalysts optimized for this reaction is essential. In this study, we propose a new catalyst for the electrocatalytic reforming of ethylene glycol (EG) derived from polyethylene terephthalate (PET) to formic acid. The catalyst comprises layered Ni-Co9S8 nanosheet arrays (NSAs) grown on nickel foam (NF) via hydrothermal method. Under EG oxidation reaction (EGOR) conditions, the Ni-Co9S8 NSAs/NF catalyst achieves Faraday efficiencies (FEs) of up to 92%. Additionally, the direct use of commercial PET plastic powder hydrolysate still enables FEs to formate to exceed 90%. These outstanding results are rationalized using density functional theory (DFT) calculations providing insights into the role of the different elements in the EGOR reaction.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过 Ni-Co-S 纳米片阵列上的乙二醇氧化作用将 PET 回收利用为甲酸酯的电化学过程
塑料因其卓越的机械性能、轻质、化学稳定性和低成本,已成为现代社会不可或缺的一部分。然而,塑料在全球范围内的持续生产和使用却带来了严重的环境问题。在这种情况下,利用电化学氧化技术对废塑料进行绿色降解和升级再循环是一种前景广阔的解决方案。要使这一解决方案切实可行,就必须开发出经济高效的催化剂,并针对这一反应进行优化。在本研究中,我们提出了一种新型催化剂,用于将聚对苯二甲酸乙二醇(EG)电催化转化为甲酸。该催化剂由通过水热法在泡沫镍(NF)上生长的层状 Ni-Co9S8 纳米片阵列(NSA)组成。在 EG 氧化反应 (EGOR) 条件下,Ni-Co9S8 NSAs/NF 催化剂的法拉第效率 (FE) 可高达 92%。此外,直接使用商用 PET 塑料粉水解物仍能使甲酸酯的法拉第效率超过 90%。通过密度泛函理论(DFT)计算,这些出色的结果得到了合理的解释,使人们对不同元素在 EGOR 反应中的作用有了更深入的了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Materials Chemistry A
Journal of Materials Chemistry A CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
19.50
自引率
5.00%
发文量
1892
审稿时长
1.5 months
期刊介绍: The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.
期刊最新文献
Manipulating defects simultaneously boosts the crystal stability and the electrochemical reversibility toward long-life aqueous zinc ion batteries Light-induced degradation of methylammonium tin iodide absorber layers High-voltage Symmetric Supercapacitors Developed by Engineering DyFeO3 Electrodes and Aqueous Electrolytes Advancing High Capacity 3D VO2(B) Cathodes for Improved Zinc-ion Battery Performance High-temperature oxidation behavior of transition metal complex concentrated alloys (TM-CCAs): a comprehensive review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1