{"title":"Enhanced oxygen exchange kinetics and long-term stability of Ruddlesden-Popper phase Pr4Ni3O10+δ cathode for solid oxide fuel cells","authors":"Saim Saher, Affaq Qamar, Chou Yong Tan, Singh Ramesh, Walied Alfraidi","doi":"10.1039/d4ta01845a","DOIUrl":null,"url":null,"abstract":"This research explores the intricacies of oxygen exchange kinetics in Pr4Ni3O10+δ (PNO), aiming to assess its potential as a viable cathode material for solid oxide fuel cell applications. Utilizing a multifaceted approach, advanced techniques such as electrical conductivity relaxation, pulse isotopic exchange, and oxygen permeation are employed. A comparative analysis with other promising cathode materials, specifically La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF6428), reveals PNO superior performance. At 650 °C, PNO demonstrates an order of magnitude higher chemical diffusion exchange coefficient, Dchem, than LSCF6428, and its surface exchange coefficient, kchem, surpasses LSCF6428 by one and a half orders of magnitude. Long-term stability assessment through 1000 h electrical conductivity relaxation testing at 700 °C confirms PNO consistent performance. Oxygen permeation studies reveal an inverse correlation between membrane thickness and permeation rate. Notably, PNO demonstrates an impressive two-fold higher oxygen flux compared to LSCF6428. Furthermore, PNO maintains stable oxygen permeation over 1000 h at 700 °C, contrasting with an observed 11% degradation in LSCF6428. X-ray diffraction and scanning electron microscopy analyses corroborate PNO stability, while secondary phase formation observed in LSCF6428 contributes to its degradation. The pulse isotopic exchange measurements conducted on the fractionated powder of PNO within the temperature range of 350-450 °C provide valuable insights into the surface exchange mechanism. These measurements reveal that at highest oxygen partial pressure (pO2) values covered by the experiments, the relative rates of dissociative adsorption, ℜads, and oxygen incorporation, ℜinc, engage in competitive oxygen exchange dynamics. Conversely, at the lower pO2 values, oxygen exchange is predominantly limited by ℜads.","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":"67 1","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4ta01845a","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This research explores the intricacies of oxygen exchange kinetics in Pr4Ni3O10+δ (PNO), aiming to assess its potential as a viable cathode material for solid oxide fuel cell applications. Utilizing a multifaceted approach, advanced techniques such as electrical conductivity relaxation, pulse isotopic exchange, and oxygen permeation are employed. A comparative analysis with other promising cathode materials, specifically La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF6428), reveals PNO superior performance. At 650 °C, PNO demonstrates an order of magnitude higher chemical diffusion exchange coefficient, Dchem, than LSCF6428, and its surface exchange coefficient, kchem, surpasses LSCF6428 by one and a half orders of magnitude. Long-term stability assessment through 1000 h electrical conductivity relaxation testing at 700 °C confirms PNO consistent performance. Oxygen permeation studies reveal an inverse correlation between membrane thickness and permeation rate. Notably, PNO demonstrates an impressive two-fold higher oxygen flux compared to LSCF6428. Furthermore, PNO maintains stable oxygen permeation over 1000 h at 700 °C, contrasting with an observed 11% degradation in LSCF6428. X-ray diffraction and scanning electron microscopy analyses corroborate PNO stability, while secondary phase formation observed in LSCF6428 contributes to its degradation. The pulse isotopic exchange measurements conducted on the fractionated powder of PNO within the temperature range of 350-450 °C provide valuable insights into the surface exchange mechanism. These measurements reveal that at highest oxygen partial pressure (pO2) values covered by the experiments, the relative rates of dissociative adsorption, ℜads, and oxygen incorporation, ℜinc, engage in competitive oxygen exchange dynamics. Conversely, at the lower pO2 values, oxygen exchange is predominantly limited by ℜads.
期刊介绍:
The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.