Zhongtao Cui;Xuesong Yuan;Xiaotao Xu;Dongrui Chen;Yifan Zu;Matthew Thomas Cole;Qingyun Chen;Yang Yan
{"title":"Theoretical Research on a D-Band Traveling Wave Extended Interaction Amplifier","authors":"Zhongtao Cui;Xuesong Yuan;Xiaotao Xu;Dongrui Chen;Yifan Zu;Matthew Thomas Cole;Qingyun Chen;Yang Yan","doi":"10.23919/cje.2022.00.345","DOIUrl":null,"url":null,"abstract":"A traveling-wave, extended interaction amplifier is herein investigated for use in millimeter-wave and terahertz amplification sources. By placing engineered extended interaction cavities between the traveling wave structures, higher gain is obtained with a shorter high frequency circuit, compared with conventional traveling wave tubes architectures. The bandwidth of the device is significantly increased relative to extended interaction klystrons. A D-band beam wave interaction circuit of 26 mm long has been designed. Particle-in-cell simulations at 21.5-kV operating voltage, 0.3-A beam current, and 5-mW input power show that the maximum output power reaches 351 W, with a gain of 48.4 dB and 3-dB bandwidth of 1.42 GHz.","PeriodicalId":50701,"journal":{"name":"Chinese Journal of Electronics","volume":"33 6","pages":"1487-1491"},"PeriodicalIF":1.6000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10748542","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Electronics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10748542/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
A traveling-wave, extended interaction amplifier is herein investigated for use in millimeter-wave and terahertz amplification sources. By placing engineered extended interaction cavities between the traveling wave structures, higher gain is obtained with a shorter high frequency circuit, compared with conventional traveling wave tubes architectures. The bandwidth of the device is significantly increased relative to extended interaction klystrons. A D-band beam wave interaction circuit of 26 mm long has been designed. Particle-in-cell simulations at 21.5-kV operating voltage, 0.3-A beam current, and 5-mW input power show that the maximum output power reaches 351 W, with a gain of 48.4 dB and 3-dB bandwidth of 1.42 GHz.
期刊介绍:
CJE focuses on the emerging fields of electronics, publishing innovative and transformative research papers. Most of the papers published in CJE are from universities and research institutes, presenting their innovative research results. Both theoretical and practical contributions are encouraged, and original research papers reporting novel solutions to the hot topics in electronics are strongly recommended.