Factor Graph-Based Technique for Trajectory Tracking of Target with High Mobility

IF 0.3 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC IEICE Communications Express Pub Date : 2024-09-10 DOI:10.23919/comex.2024XBL0132
Lei Jiang;Nopphon Keerativoranan;Tad Matsumoto;Jun-ichi Takada
{"title":"Factor Graph-Based Technique for Trajectory Tracking of Target with High Mobility","authors":"Lei Jiang;Nopphon Keerativoranan;Tad Matsumoto;Jun-ichi Takada","doi":"10.23919/comex.2024XBL0132","DOIUrl":null,"url":null,"abstract":"This paper presents a trajectory tracking algorithm for high-mobility targets using an extended Kalman smoothing (EKS)-based factor graph (FG). Traditional tracking methods often face challenges in maintaining accuracy and computational efficiency when dealing with fast-moving objects. Leveraging the probabilistic framework of factor graphs and robust estimation of EKS, the algorithm enhances tracking precision for fast-moving objects. Extensive simulations across various motion models demonstrate improved accuracy and robustness. The results indicate that this method effectively addresses the limitations of conventional tracking algorithms, providing a promising solution for applications in aviation, autonomous vehicles, and other domains requiring high-mobility tracking.","PeriodicalId":54101,"journal":{"name":"IEICE Communications Express","volume":"13 11","pages":"431-434"},"PeriodicalIF":0.3000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10675312","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEICE Communications Express","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10675312/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a trajectory tracking algorithm for high-mobility targets using an extended Kalman smoothing (EKS)-based factor graph (FG). Traditional tracking methods often face challenges in maintaining accuracy and computational efficiency when dealing with fast-moving objects. Leveraging the probabilistic framework of factor graphs and robust estimation of EKS, the algorithm enhances tracking precision for fast-moving objects. Extensive simulations across various motion models demonstrate improved accuracy and robustness. The results indicate that this method effectively addresses the limitations of conventional tracking algorithms, providing a promising solution for applications in aviation, autonomous vehicles, and other domains requiring high-mobility tracking.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于因子图的高移动性目标轨迹跟踪技术
本文介绍了一种利用基于扩展卡尔曼平滑(EKS)的因子图(FG)对高移动性目标进行轨迹跟踪的算法。传统的跟踪方法在处理快速移动的目标时,往往在保持精度和计算效率方面面临挑战。利用因子图的概率框架和 EKS 的稳健估计,该算法提高了对快速移动物体的跟踪精度。通过对各种运动模型的广泛模拟,证明了精度和鲁棒性的提高。结果表明,这种方法有效地解决了传统跟踪算法的局限性,为航空、自动驾驶汽车和其他需要高移动性跟踪的领域的应用提供了一种前景广阔的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEICE Communications Express
IEICE Communications Express ENGINEERING, ELECTRICAL & ELECTRONIC-
自引率
33.30%
发文量
114
期刊最新文献
Special Cluster on Antennas and Propagation Technologies in Conjunction with Main Topics of iWAT 2024 Occupancy Grid Map Estimation Method using Roadside Sensor for Cooperative Automated Driving Three-Axis Coil Array for Null-Free Near-Field Tag Reading with UHF RFID Indoor mMTC Group Targets Localization in 5G Networks Based on Parallel Chaotic Stochastic Resonance Processing of Distance Estimation Between Terminals Discrete Wigner-Ville Distribution with Wide Frequency Observation Range
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1