Improving Visual Place Recognition Based Robot Navigation by Verifying Localization Estimates

IF 4.6 2区 计算机科学 Q2 ROBOTICS IEEE Robotics and Automation Letters Pub Date : 2024-10-17 DOI:10.1109/LRA.2024.3483045
Owen Claxton;Connor Malone;Helen Carson;Jason J. Ford;Gabe Bolton;Iman Shames;Michael Milford
{"title":"Improving Visual Place Recognition Based Robot Navigation by Verifying Localization Estimates","authors":"Owen Claxton;Connor Malone;Helen Carson;Jason J. Ford;Gabe Bolton;Iman Shames;Michael Milford","doi":"10.1109/LRA.2024.3483045","DOIUrl":null,"url":null,"abstract":"Visual Place Recognition (VPR) systems often have imperfect performance, affecting the ‘integrity’ of position estimates and subsequent robot navigation decisions. Previously, SVM classifiers have been used to monitor VPR integrity. This research introduces a novel Multi-Layer Perceptron (MLP) integrity monitor which demonstrates improved performance and generalizability, removing per-environment training and reducing manual tuning requirements. We test our proposed system in extensive real-world experiments, presenting two real-time integrity-based VPR verification methods: a single-query rejection method for robot navigation to a goal zone (Experiment 1); and a history-of-queries method that takes a best, verified, match from its recent trajectory and uses an odometer to extrapolate a current position estimate (Experiment 2). Noteworthy results for Experiment 1 include a decrease in aggregate mean along-track goal error from \n<inline-formula><tex-math>$ \\approx \\!9.8\\;{\\text{m}}$</tex-math></inline-formula>\n to \n<inline-formula><tex-math>$ \\approx \\!3.1\\;{\\text{m}}$</tex-math></inline-formula>\n, and an increase in the aggregate rate of successful mission completion from \n<inline-formula><tex-math>$\\approx \\!41\\%$</tex-math></inline-formula>\n to \n<inline-formula><tex-math>$\\approx \\!55\\%$</tex-math></inline-formula>\n. Experiment 2 showed a decrease in aggregate mean along-track localization error from \n<inline-formula><tex-math>$ \\approx \\!2.0\\;{\\text{m}}$</tex-math></inline-formula>\n to \n<inline-formula><tex-math>$ \\approx \\!0.5\\;{\\text{m}}$</tex-math></inline-formula>\n, and an increase in the aggregate localization precision from \n<inline-formula><tex-math>$\\approx \\!97\\%$</tex-math></inline-formula>\n to \n<inline-formula><tex-math>$\\approx \\!99\\%$</tex-math></inline-formula>\n. Overall, our results demonstrate the practical usefulness of a VPR integrity monitor in real-world robotics to improve VPR localization and consequent navigation performance.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"9 12","pages":"11098-11105"},"PeriodicalIF":4.6000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10720893/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Visual Place Recognition (VPR) systems often have imperfect performance, affecting the ‘integrity’ of position estimates and subsequent robot navigation decisions. Previously, SVM classifiers have been used to monitor VPR integrity. This research introduces a novel Multi-Layer Perceptron (MLP) integrity monitor which demonstrates improved performance and generalizability, removing per-environment training and reducing manual tuning requirements. We test our proposed system in extensive real-world experiments, presenting two real-time integrity-based VPR verification methods: a single-query rejection method for robot navigation to a goal zone (Experiment 1); and a history-of-queries method that takes a best, verified, match from its recent trajectory and uses an odometer to extrapolate a current position estimate (Experiment 2). Noteworthy results for Experiment 1 include a decrease in aggregate mean along-track goal error from $ \approx \!9.8\;{\text{m}}$ to $ \approx \!3.1\;{\text{m}}$ , and an increase in the aggregate rate of successful mission completion from $\approx \!41\%$ to $\approx \!55\%$ . Experiment 2 showed a decrease in aggregate mean along-track localization error from $ \approx \!2.0\;{\text{m}}$ to $ \approx \!0.5\;{\text{m}}$ , and an increase in the aggregate localization precision from $\approx \!97\%$ to $\approx \!99\%$ . Overall, our results demonstrate the practical usefulness of a VPR integrity monitor in real-world robotics to improve VPR localization and consequent navigation performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过验证定位估计值改进基于视觉地点识别的机器人导航
视觉位置识别(VPR)系统的性能往往不尽如人意,会影响位置估计的 "完整性 "和随后的机器人导航决策。以前,人们使用 SVM 分类器来监控 VPR 的完整性。这项研究引入了一种新型的多层感知器(MLP)完整性监控器,该监控器的性能和通用性都有所提高,无需根据环境进行训练,并减少了手动调整的要求。我们在大量真实世界实验中测试了我们提出的系统,并介绍了两种基于完整性的实时 VPR 验证方法:一种用于机器人导航至目标区域的单次查询剔除方法(实验 1);以及一种查询历史方法,该方法从最近的轨迹中提取经过验证的最佳匹配,并使用里程计推断当前位置估计值(实验 2)。实验 1 的显著结果包括:沿轨迹目标误差的总平均值从 9.8 降至 3.1,任务成功完成率从 41 降至 55。实验2显示,沿轨迹定位的总平均误差从2.0降低到0.5,定位精度从97提高到99。总之,我们的研究结果表明,在真实世界的机器人技术中,VPR完整性监控器在改善VPR定位和随之而来的导航性能方面具有实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
期刊最新文献
Integrated Grasping Controller Leveraging Optical Proximity Sensors for Simultaneous Contact, Impact Reduction, and Force Control Single-Motor-Driven (4 + 2)-Fingered Robotic Gripper Capable of Expanding the Workable Space in the Extremely Confined Environment CMGFA: A BEV Segmentation Model Based on Cross-Modal Group-Mix Attention Feature Aggregator Visual-Inertial Localization Leveraging Skylight Polarization Pattern Constraints Demonstration Data-Driven Parameter Adjustment for Trajectory Planning in Highly Constrained Environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1