Intelligent Multigrade Brain Tumor Identification in MRI: A Metaheuristic-Based Uncertain Set Framework

Saravanan Alagarsamy;Vishnuvarthanan Govindaraj;A. Shahina;D. Nagarajan
{"title":"Intelligent Multigrade Brain Tumor Identification in MRI: A Metaheuristic-Based Uncertain Set Framework","authors":"Saravanan Alagarsamy;Vishnuvarthanan Govindaraj;A. Shahina;D. Nagarajan","doi":"10.1109/TAI.2024.3441520","DOIUrl":null,"url":null,"abstract":"This research intends to address the critical need for precise brain tumor prediction through the development of an automated method that entwines the Firefly (FF) algorithm and the interval type-II fuzzy (IT2FLS) technique. The proposed method improves tumor delineation in complex brain tissue by using the FF algorithm to find possible cluster positions and the IT2FLS system for final clustering. This algorithm demonstrates its versatility by processing diverse image sequences from BRATS challenge datasets (2017, 2018, and 2020), which encompass varying levels of complexity. Through comprehensive evaluation metrics such as sensitivity, specificity, and dice-overlap index (DOI), the proposed algorithm consistently yields improved segmentation results. Ultimately, this research aims to augment oncologists' perceptual acumen, facilitating enhanced intuition and comprehension of patients' conditions, thereby advancing decision-making capabilities in medical research.","PeriodicalId":73305,"journal":{"name":"IEEE transactions on artificial intelligence","volume":"5 11","pages":"5381-5391"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on artificial intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10633878/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This research intends to address the critical need for precise brain tumor prediction through the development of an automated method that entwines the Firefly (FF) algorithm and the interval type-II fuzzy (IT2FLS) technique. The proposed method improves tumor delineation in complex brain tissue by using the FF algorithm to find possible cluster positions and the IT2FLS system for final clustering. This algorithm demonstrates its versatility by processing diverse image sequences from BRATS challenge datasets (2017, 2018, and 2020), which encompass varying levels of complexity. Through comprehensive evaluation metrics such as sensitivity, specificity, and dice-overlap index (DOI), the proposed algorithm consistently yields improved segmentation results. Ultimately, this research aims to augment oncologists' perceptual acumen, facilitating enhanced intuition and comprehension of patients' conditions, thereby advancing decision-making capabilities in medical research.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
磁共振成像中的智能多级脑肿瘤识别:基于元搜索的不确定集合框架
这项研究旨在通过开发一种结合了萤火虫(FF)算法和区间II型模糊(IT2FLS)技术的自动化方法,满足精确预测脑肿瘤的迫切需要。所提出的方法利用萤火虫算法寻找可能的聚类位置,并利用 IT2FLS 系统进行最终聚类,从而改进了复杂脑组织中的肿瘤划分。该算法通过处理来自 BRATS 挑战数据集(2017 年、2018 年和 2020 年)的各种图像序列,展示了其多功能性,这些数据集包含不同程度的复杂性。通过灵敏度、特异性和骰子重叠指数(DOI)等综合评估指标,所提出的算法始终能产生更好的分割结果。最终,这项研究旨在增强肿瘤学家的感知敏锐度,促进对患者病情的直觉和理解,从而提高医学研究的决策能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.70
自引率
0.00%
发文量
0
期刊最新文献
Front Cover Table of Contents IEEE Transactions on Artificial Intelligence Publication Information Table of Contents Front Cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1