{"title":"Graph Diffusion-Based Representation Learning for Sequential Recommendation","authors":"Zhaobo Wang;Yanmin Zhu;Chunyang Wang;Xuhao Zhao;Bo Li;Jiadi Yu;Feilong Tang","doi":"10.1109/TKDE.2024.3477621","DOIUrl":null,"url":null,"abstract":"Sequential recommendation is a critical part of the flourishing online applications by suggesting appealing items on users’ next interactions, where global dependencies among items have proven to be indispensable for enhancing the quality of item representations toward a better understanding of user dynamic preferences. Existing methods rely on pre-defined graphs with shallow Graph Neural Networks to capture such necessary dependencies due to the constraint of the over-smoothing problem. However, this graph representation learning paradigm makes them difficult to satisfy the original expectation because of noisy graph structures and the limited ability of shallow architectures for modeling high-order relations. In this paper, we propose a novel Graph Diffusion Representation-enhanced Attention Network for sequential recommendation, which explores the construction of deeper networks by utilizing graph diffusion on adaptive graph structures for generating expressive item representations. Specifically, we design an adaptive graph generation strategy via leveraging similarity learning between item embeddings, automatically optimizing the input graph topology under the guidance of downstream recommendation tasks. Afterward, we propose a novel graph diffusion paradigm with robustness to over-smoothing, which enriches the learned item representations with sufficient global dependencies for attention-based sequential modeling. Moreover, extensive experiments demonstrate the effectiveness of our approach over state-of-the-art baselines.","PeriodicalId":13496,"journal":{"name":"IEEE Transactions on Knowledge and Data Engineering","volume":"36 12","pages":"8395-8407"},"PeriodicalIF":8.9000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Knowledge and Data Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10713269/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Sequential recommendation is a critical part of the flourishing online applications by suggesting appealing items on users’ next interactions, where global dependencies among items have proven to be indispensable for enhancing the quality of item representations toward a better understanding of user dynamic preferences. Existing methods rely on pre-defined graphs with shallow Graph Neural Networks to capture such necessary dependencies due to the constraint of the over-smoothing problem. However, this graph representation learning paradigm makes them difficult to satisfy the original expectation because of noisy graph structures and the limited ability of shallow architectures for modeling high-order relations. In this paper, we propose a novel Graph Diffusion Representation-enhanced Attention Network for sequential recommendation, which explores the construction of deeper networks by utilizing graph diffusion on adaptive graph structures for generating expressive item representations. Specifically, we design an adaptive graph generation strategy via leveraging similarity learning between item embeddings, automatically optimizing the input graph topology under the guidance of downstream recommendation tasks. Afterward, we propose a novel graph diffusion paradigm with robustness to over-smoothing, which enriches the learned item representations with sufficient global dependencies for attention-based sequential modeling. Moreover, extensive experiments demonstrate the effectiveness of our approach over state-of-the-art baselines.
期刊介绍:
The IEEE Transactions on Knowledge and Data Engineering encompasses knowledge and data engineering aspects within computer science, artificial intelligence, electrical engineering, computer engineering, and related fields. It provides an interdisciplinary platform for disseminating new developments in knowledge and data engineering and explores the practicality of these concepts in both hardware and software. Specific areas covered include knowledge-based and expert systems, AI techniques for knowledge and data management, tools, and methodologies, distributed processing, real-time systems, architectures, data management practices, database design, query languages, security, fault tolerance, statistical databases, algorithms, performance evaluation, and applications.