Multiscale Bilateral Attention Fusion Network for Pansharpening

Zhongyuan Guo;Jiawei Li;Jia Lei;Jinyuan Liu;Shihua Zhou;Bin Wang;Nikola K. Kasabov
{"title":"Multiscale Bilateral Attention Fusion Network for Pansharpening","authors":"Zhongyuan Guo;Jiawei Li;Jia Lei;Jinyuan Liu;Shihua Zhou;Bin Wang;Nikola K. Kasabov","doi":"10.1109/TAI.2024.3418378","DOIUrl":null,"url":null,"abstract":"High-resolution multispectral (HRMS) images combine spatial and spectral information originating from panchromatic (PAN) and reduced-resolution multispectral (LRMS) images. Pansharpening performs well and is widely used to obtain HRMS images. However, most pansharpening approaches determine the ratio of PAN and LRMS images through direct interpolation, which may introduce artifacts and distort the color of the fused results. To address this issue, an unsupervised progressive pansharpening framework, MSBANet, is proposed, which adopts a multistage fusion strategy. Each stage contains an attention interactive extraction module (AIEM) and a multiscale bilateral fusion module (MBFM). The AIEM extracts spatial and spectral features from input images and captures the correlations between features. The MBFM can efficiently integrate information from the AIEM and improve MSBANet context awareness. We design a hybrid loss function that enhances the ability of the fusion network to store spectral and texture details. In qualitative and quantitative experimental studies on four datasets, MSBANet outperformed state-of-the-art pansharpening techniques. The code will be released.","PeriodicalId":73305,"journal":{"name":"IEEE transactions on artificial intelligence","volume":"5 11","pages":"5828-5843"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on artificial intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10570347/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

High-resolution multispectral (HRMS) images combine spatial and spectral information originating from panchromatic (PAN) and reduced-resolution multispectral (LRMS) images. Pansharpening performs well and is widely used to obtain HRMS images. However, most pansharpening approaches determine the ratio of PAN and LRMS images through direct interpolation, which may introduce artifacts and distort the color of the fused results. To address this issue, an unsupervised progressive pansharpening framework, MSBANet, is proposed, which adopts a multistage fusion strategy. Each stage contains an attention interactive extraction module (AIEM) and a multiscale bilateral fusion module (MBFM). The AIEM extracts spatial and spectral features from input images and captures the correlations between features. The MBFM can efficiently integrate information from the AIEM and improve MSBANet context awareness. We design a hybrid loss function that enhances the ability of the fusion network to store spectral and texture details. In qualitative and quantitative experimental studies on four datasets, MSBANet outperformed state-of-the-art pansharpening techniques. The code will be released.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于泛锐化的多尺度双边注意力融合网络
高分辨率多光谱(HRMS)图像结合了来自全色(PAN)和低分辨率多光谱(LRMS)图像的空间和光谱信息。泛色锐化技术性能良好,被广泛用于获取 HRMS 图像。然而,大多数平锐化方法都是通过直接插值来确定 PAN 和 LRMS 图像的比例,这可能会引入伪影并扭曲融合结果的颜色。为解决这一问题,我们提出了一种无监督渐进式平锐化框架 MSBANet,它采用多阶段融合策略。每个阶段都包含一个注意力交互提取模块(AIEM)和一个多尺度双边融合模块(MBFM)。注意力互动提取模块从输入图像中提取空间和光谱特征,并捕捉特征之间的相关性。MBFM 可以有效整合来自 AIEM 的信息,提高 MSBANet 的上下文感知能力。我们设计了一种混合损失函数,可增强融合网络存储光谱和纹理细节的能力。在对四个数据集进行的定性和定量实验研究中,MSBANet 的表现优于最先进的平锐化技术。代码即将发布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.70
自引率
0.00%
发文量
0
期刊最新文献
Table of Contents Front Cover IEEE Transactions on Artificial Intelligence Publication Information Table of Contents Front Cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1