Prediction of the formability and stability of perovskite oxides via multi-label classification†

IF 2.7 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY New Journal of Chemistry Pub Date : 2024-10-28 DOI:10.1039/D4NJ03783A
Xiaoyan Wang and Jie Zhao
{"title":"Prediction of the formability and stability of perovskite oxides via multi-label classification†","authors":"Xiaoyan Wang and Jie Zhao","doi":"10.1039/D4NJ03783A","DOIUrl":null,"url":null,"abstract":"<p >Perovskite oxides are promising candidates for diverse applications due to their versatile physical and chemical properties. However, their structural and compositional flexibility significantly delay the traditional methods of screening formable and thermodynamically stable perovskite oxides. Single-label machine learning methods have been extensively used to solve this challenge, but these often result in the misselection of unstable perovskite oxides by formability prediction models and non-formable perovskite oxides by stability prediction models. Here, multi-label classification (MLC) methods are employed to simultaneously screen for both formable and stable perovskite oxides. We investigate the label dependency of formability and stability labels, finding significant unconditional dependency but little conditional dependency. Using a recursive feature addition method, 10 features are selected from an initial set of 159. SHapley Additive exPlanations (SHAP) analysis reveals that the atomic weight of B-site elements and the ionic radii ratio of the A-site to the B-site cations are the most important features. Among the eight MLC methods evaluated, the classifier chains (CC) model outperforms its counterparts. An optimized CC model achieves outstanding performance with a subset accuracy of 0.932 and a Hamming loss of 0.0342. This model is further generalized on 2226 virtual perovskite combinations, identifying 42 formable and stable perovskite oxides for future investigation. This work presents an effective approach for screening potential perovskite oxides, which can be further extended to other fields that involve predicting multiple properties concurrently.</p>","PeriodicalId":95,"journal":{"name":"New Journal of Chemistry","volume":" 44","pages":" 18917-18924"},"PeriodicalIF":2.7000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/nj/d4nj03783a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Perovskite oxides are promising candidates for diverse applications due to their versatile physical and chemical properties. However, their structural and compositional flexibility significantly delay the traditional methods of screening formable and thermodynamically stable perovskite oxides. Single-label machine learning methods have been extensively used to solve this challenge, but these often result in the misselection of unstable perovskite oxides by formability prediction models and non-formable perovskite oxides by stability prediction models. Here, multi-label classification (MLC) methods are employed to simultaneously screen for both formable and stable perovskite oxides. We investigate the label dependency of formability and stability labels, finding significant unconditional dependency but little conditional dependency. Using a recursive feature addition method, 10 features are selected from an initial set of 159. SHapley Additive exPlanations (SHAP) analysis reveals that the atomic weight of B-site elements and the ionic radii ratio of the A-site to the B-site cations are the most important features. Among the eight MLC methods evaluated, the classifier chains (CC) model outperforms its counterparts. An optimized CC model achieves outstanding performance with a subset accuracy of 0.932 and a Hamming loss of 0.0342. This model is further generalized on 2226 virtual perovskite combinations, identifying 42 formable and stable perovskite oxides for future investigation. This work presents an effective approach for screening potential perovskite oxides, which can be further extended to other fields that involve predicting multiple properties concurrently.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过多标签分类预测包晶氧化物的可成形性和稳定性†。
透镜氧化物具有多种物理和化学性质,因此在多种应用领域大有可为。然而,它们在结构和组成上的灵活性大大延缓了筛选可成形且热力学稳定的包晶氧化物的传统方法。单标签机器学习方法已被广泛用于解决这一难题,但这些方法往往会导致可成形性预测模型误选不稳定的包晶氧化物,而稳定性预测模型误选不可成形的包晶氧化物。在此,我们采用多标签分类(MLC)方法同时筛选可成形和稳定的包晶氧化物。我们研究了可成形性和稳定性标签的标签依赖性,发现无条件依赖性很大,但条件依赖性很小。使用递归特征添加法,从初始的 159 个特征集中选出了 10 个特征。SHapley Additive exPlanations(SHAP)分析表明,B 位元素的原子量和 A 位阳离子与 B 位阳离子的离子半径比是最重要的特征。在评估的八种 MLC 方法中,分类器链(CC)模型的表现优于同类方法。优化后的 CC 模型性能卓越,子集准确率为 0.932,汉明损失为 0.0342。该模型在 2226 种虚拟包晶组合上得到进一步推广,确定了 42 种可形成的稳定包晶氧化物,供未来研究使用。这项工作为筛选潜在的包晶氧化物提供了一种有效的方法,该方法可进一步扩展到同时预测多种性质的其他领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
New Journal of Chemistry
New Journal of Chemistry 化学-化学综合
CiteScore
5.30
自引率
6.10%
发文量
1832
审稿时长
2 months
期刊介绍: A journal for new directions in chemistry
期刊最新文献
Back cover Back cover A transition-metal-free catalytic reduction of benzylic alcohols and alkenes and N-formylation of nitroarenes mediated by iodide ions and formic acid† Construction of morphology-controllable NiS/Ni3S4 hybrid nanosheets for all-solid-state asymmetric supercapacitors† Enhanced solar steam generation using carbonized Platanus acerifolia fruit with fibrous channels for improved water transport†
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1