{"title":"Tutorial: From Topology to Hall Effects—Implications of Berry Phase Physics","authors":"Nico Sprinkart, Elke Scheer, Angelo Di Bernardo","doi":"10.1007/s10909-024-03219-6","DOIUrl":null,"url":null,"abstract":"<div><p>The Berry phase is a fundamental concept in quantum mechanics with profound implications for understanding topological properties of quantum systems. This tutorial provides a comprehensive introduction to the Berry phase, beginning with the essential mathematical framework required to grasp its significance. We explore the intrinsic link between the emergence of a non-trivial Berry phase and the presence of topological characteristics in quantum systems, showing the connection between the Berry phase and the band structure as well as the phase’s gauge-invariant nature during cyclic evolutions. The tutorial delves into various topological effects arising from the Berry phase, such as the quantum, anomalous, and spin Hall effects, which exemplify how these quantum phases manifest in observable phenomena. We then extend our discussion to cover the transport properties of topological insulators, elucidating their unique behaviour rooted in the Berry phase physics. This tutorial aims at equipping its readers with a robust understanding of the basic theory underlying the Berry phase and of its pivotal role in the realm of topological quantum phenomena.</p></div>","PeriodicalId":641,"journal":{"name":"Journal of Low Temperature Physics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10909-024-03219-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Low Temperature Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10909-024-03219-6","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The Berry phase is a fundamental concept in quantum mechanics with profound implications for understanding topological properties of quantum systems. This tutorial provides a comprehensive introduction to the Berry phase, beginning with the essential mathematical framework required to grasp its significance. We explore the intrinsic link between the emergence of a non-trivial Berry phase and the presence of topological characteristics in quantum systems, showing the connection between the Berry phase and the band structure as well as the phase’s gauge-invariant nature during cyclic evolutions. The tutorial delves into various topological effects arising from the Berry phase, such as the quantum, anomalous, and spin Hall effects, which exemplify how these quantum phases manifest in observable phenomena. We then extend our discussion to cover the transport properties of topological insulators, elucidating their unique behaviour rooted in the Berry phase physics. This tutorial aims at equipping its readers with a robust understanding of the basic theory underlying the Berry phase and of its pivotal role in the realm of topological quantum phenomena.
期刊介绍:
The Journal of Low Temperature Physics publishes original papers and review articles on all areas of low temperature physics and cryogenics, including theoretical and experimental contributions. Subject areas include: Quantum solids, liquids and gases; Superfluidity; Superconductivity; Condensed matter physics; Experimental techniques; The Journal encourages the submission of Rapid Communications and Special Issues.