{"title":"Adaptive Hypersphere Data Description for few-shot one-class classification","authors":"Yuchen Ren, Xiabi Liu, Liyuan Pan, Lijuan Niu","doi":"10.1007/s10489-024-05836-w","DOIUrl":null,"url":null,"abstract":"<p>Few-shot one-class classification (FS-OCC) is an important and challenging problem involving the recognition of a class using a limited number of positive training samples. Data description is essential for solving the FS-OCC problem as it delineates a region that separates positive data from other classes in the feature space. This paper introduces an effective FS-OCC model named Adaptive Hypersphere Data Description (AHDD). AHDD utilizes hypersphere-based data description with a learnable radius to determine the appropriate region for positive samples in the feature space. Both the radius and the feature network are learned concurrently using meta-learning. We propose a loss function for AHDD that enables the mutual adaptation of the radius and feature within a single FS-OCC task. AHDD significantly outperforms other state-of-the-art FS-OCC methods across various benchmarks and demonstrates strong performance on test sets with extreme class imbalance rates. Experimental results indicate that AHDD learns a robust feature representation, and the implementation of an adaptive radius can also improve the existing FS-OCC baselines.</p>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"54 24","pages":"12885 - 12897"},"PeriodicalIF":3.4000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-024-05836-w","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Few-shot one-class classification (FS-OCC) is an important and challenging problem involving the recognition of a class using a limited number of positive training samples. Data description is essential for solving the FS-OCC problem as it delineates a region that separates positive data from other classes in the feature space. This paper introduces an effective FS-OCC model named Adaptive Hypersphere Data Description (AHDD). AHDD utilizes hypersphere-based data description with a learnable radius to determine the appropriate region for positive samples in the feature space. Both the radius and the feature network are learned concurrently using meta-learning. We propose a loss function for AHDD that enables the mutual adaptation of the radius and feature within a single FS-OCC task. AHDD significantly outperforms other state-of-the-art FS-OCC methods across various benchmarks and demonstrates strong performance on test sets with extreme class imbalance rates. Experimental results indicate that AHDD learns a robust feature representation, and the implementation of an adaptive radius can also improve the existing FS-OCC baselines.
期刊介绍:
With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance.
The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.