{"title":"A multi-task genetic programming approach for online multi-objective container placement in heterogeneous cluster","authors":"Ruochen Liu, Haoyuan Lv, Ping Yang, Rongfang Wang","doi":"10.1007/s40747-024-01605-x","DOIUrl":null,"url":null,"abstract":"<p>Owing to the potential for fast deployment, containerization technology has been widely used in web applications based on microservice architecture. Online container placement aims to improve resource utilization and meet other service quality requirements of cloud data centers. Most current heuristic and hyper-heuristic methods for container placement rely on single allocation rules, which are inefficient in heterogeneous cluster scenarios. Moreover, some container placement tasks often have similar characteristics (e.g., resource request types and physical machine types), but traditional single-task optimization modeling cannot exploit potential common knowledge, resulting in repeated optimization during resource allocation. Therefore, a new multi-task genetic programming method is proposed to solve the online multi-objective container placement problem (MOCP-MTGP). This method considers selecting appropriate allocation rules according to the types of resource requests and cluster status. MOCP-MTGP can automatically generate multiple groups of allocation rules from historical workload patterns and different cluster states, and capture the similarities between all online tasks to guide the transfer of general knowledge during optimization. Comprehensive experiments show that the proposed algorithm can improve the resource utilization of clusters, reduce the number of physical machines, and effectively meet resource constraints and high availability requirements.</p>","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":"7 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex & Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s40747-024-01605-x","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Owing to the potential for fast deployment, containerization technology has been widely used in web applications based on microservice architecture. Online container placement aims to improve resource utilization and meet other service quality requirements of cloud data centers. Most current heuristic and hyper-heuristic methods for container placement rely on single allocation rules, which are inefficient in heterogeneous cluster scenarios. Moreover, some container placement tasks often have similar characteristics (e.g., resource request types and physical machine types), but traditional single-task optimization modeling cannot exploit potential common knowledge, resulting in repeated optimization during resource allocation. Therefore, a new multi-task genetic programming method is proposed to solve the online multi-objective container placement problem (MOCP-MTGP). This method considers selecting appropriate allocation rules according to the types of resource requests and cluster status. MOCP-MTGP can automatically generate multiple groups of allocation rules from historical workload patterns and different cluster states, and capture the similarities between all online tasks to guide the transfer of general knowledge during optimization. Comprehensive experiments show that the proposed algorithm can improve the resource utilization of clusters, reduce the number of physical machines, and effectively meet resource constraints and high availability requirements.
期刊介绍:
Complex & Intelligent Systems aims to provide a forum for presenting and discussing novel approaches, tools and techniques meant for attaining a cross-fertilization between the broad fields of complex systems, computational simulation, and intelligent analytics and visualization. The transdisciplinary research that the journal focuses on will expand the boundaries of our understanding by investigating the principles and processes that underlie many of the most profound problems facing society today.