Trainability barriers and opportunities in quantum generative modeling

IF 6.6 1区 物理与天体物理 Q1 PHYSICS, APPLIED npj Quantum Information Pub Date : 2024-11-13 DOI:10.1038/s41534-024-00902-0
Manuel S. Rudolph, Sacha Lerch, Supanut Thanasilp, Oriel Kiss, Oxana Shaya, Sofia Vallecorsa, Michele Grossi, Zoë Holmes
{"title":"Trainability barriers and opportunities in quantum generative modeling","authors":"Manuel S. Rudolph, Sacha Lerch, Supanut Thanasilp, Oriel Kiss, Oxana Shaya, Sofia Vallecorsa, Michele Grossi, Zoë Holmes","doi":"10.1038/s41534-024-00902-0","DOIUrl":null,"url":null,"abstract":"<p>Quantum generative models provide inherently efficient sampling strategies and thus show promise for achieving an advantage using quantum hardware. In this work, we investigate the barriers to the trainability of quantum generative models posed by barren plateaus and exponential loss concentration. We explore the interplay between explicit and implicit models and losses, and show that using quantum generative models with explicit losses such as the KL divergence leads to a new flavor of barren plateaus. In contrast, the implicit Maximum Mean Discrepancy loss can be viewed as the expectation value of an observable that is either low-bodied and provably trainable, or global and untrainable depending on the choice of kernel. In parallel, we find that solely low-bodied implicit losses cannot in general distinguish high-order correlations in the target data, while some quantum loss estimation strategies can. We validate our findings by comparing different loss functions for modeling data from High-Energy-Physics.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"9 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41534-024-00902-0","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum generative models provide inherently efficient sampling strategies and thus show promise for achieving an advantage using quantum hardware. In this work, we investigate the barriers to the trainability of quantum generative models posed by barren plateaus and exponential loss concentration. We explore the interplay between explicit and implicit models and losses, and show that using quantum generative models with explicit losses such as the KL divergence leads to a new flavor of barren plateaus. In contrast, the implicit Maximum Mean Discrepancy loss can be viewed as the expectation value of an observable that is either low-bodied and provably trainable, or global and untrainable depending on the choice of kernel. In parallel, we find that solely low-bodied implicit losses cannot in general distinguish high-order correlations in the target data, while some quantum loss estimation strategies can. We validate our findings by comparing different loss functions for modeling data from High-Energy-Physics.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
量子生成模型的可训练性障碍与机遇
量子生成模型提供固有的高效采样策略,因此有望利用量子硬件实现优势。在这项工作中,我们研究了贫瘠高原和指数损失集中对量子生成模型可训练性造成的障碍。我们探索了显式和隐式模型与损失之间的相互作用,结果表明,使用具有显式损失(如 KL 发散)的量子生成模型会导致新的贫瘠高原。与此相反,隐式最大均差损失可被视为观测值的期望值,根据内核的选择,该观测值要么是低体的且可证明是可训练的,要么是全局的且不可训练的。与此同时,我们还发现,一般情况下,单纯的低体隐式损失无法区分目标数据中的高阶相关性,而一些量子损失估计策略则可以。我们通过比较不同的损失函数对高能物理数据建模,验证了我们的发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
npj Quantum Information
npj Quantum Information Computer Science-Computer Science (miscellaneous)
CiteScore
13.70
自引率
3.90%
发文量
130
审稿时长
29 weeks
期刊介绍: The scope of npj Quantum Information spans across all relevant disciplines, fields, approaches and levels and so considers outstanding work ranging from fundamental research to applications and technologies.
期刊最新文献
Quantum networks with coherent routing of information through multiple nodes Quantum simulation of realistic materials in first quantization using non-local pseudopotentials Unleashed from constrained optimization: quantum computing for quantum chemistry employing generator coordinate inspired method Simultaneous discovery of quantum error correction codes and encoders with a noise-aware reinforcement learning agent A quantum leaky integrate-and-fire spiking neuron and network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1