{"title":"Structural and biochemical insights into the mechanism of the anti-CRISPR protein AcrIE3","authors":"Jasung Koo, Gyujin Lee, Changkon Park, Hyejin Oh, Sung-Hyun Hong, Jeong-Yong Suh, Euiyoung Bae","doi":"10.1016/j.str.2024.10.024","DOIUrl":null,"url":null,"abstract":"Anti-CRISPR (Acr) proteins are natural inhibitors of CRISPR-Cas systems, found in bacteriophages and other genetic elements. AcrIE3, identified in a <em>Pseudomonas</em> phage, inactivates the type I-E CRISPR-Cas system in <em>Pseudomonas aeruginosa</em> by engaging with the Cascade complex. However, its precise inhibition mechanism has remained elusive. In this study, we present a comprehensive structural and biochemical analysis of AcrIE3, providing mechanistic insight into its anti-CRISPR function. Our results reveal that AcrIE3 selectively binds to the Cas8e subunit of the Cascade complex. The crystal structure of AcrIE3 exhibits an all-helical fold with a negatively charged surface. Through extensive mutational analyses, we show that AcrIE3 interacts with the protospacer adjacent motif (PAM) recognition site in Cas8e through its negatively charged surface residues. These findings enhance our understanding of the structure and function of type I-E Acr proteins, suggesting PAM interaction sites as primary targets for divergent Acr inhibitors.","PeriodicalId":22168,"journal":{"name":"Structure","volume":"95 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structure","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.str.2024.10.024","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Anti-CRISPR (Acr) proteins are natural inhibitors of CRISPR-Cas systems, found in bacteriophages and other genetic elements. AcrIE3, identified in a Pseudomonas phage, inactivates the type I-E CRISPR-Cas system in Pseudomonas aeruginosa by engaging with the Cascade complex. However, its precise inhibition mechanism has remained elusive. In this study, we present a comprehensive structural and biochemical analysis of AcrIE3, providing mechanistic insight into its anti-CRISPR function. Our results reveal that AcrIE3 selectively binds to the Cas8e subunit of the Cascade complex. The crystal structure of AcrIE3 exhibits an all-helical fold with a negatively charged surface. Through extensive mutational analyses, we show that AcrIE3 interacts with the protospacer adjacent motif (PAM) recognition site in Cas8e through its negatively charged surface residues. These findings enhance our understanding of the structure and function of type I-E Acr proteins, suggesting PAM interaction sites as primary targets for divergent Acr inhibitors.
期刊介绍:
Structure aims to publish papers of exceptional interest in the field of structural biology. The journal strives to be essential reading for structural biologists, as well as biologists and biochemists that are interested in macromolecular structure and function. Structure strongly encourages the submission of manuscripts that present structural and molecular insights into biological function and mechanism. Other reports that address fundamental questions in structural biology, such as structure-based examinations of protein evolution, folding, and/or design, will also be considered. We will consider the application of any method, experimental or computational, at high or low resolution, to conduct structural investigations, as long as the method is appropriate for the biological, functional, and mechanistic question(s) being addressed. Likewise, reports describing single-molecule analysis of biological mechanisms are welcome.
In general, the editors encourage submission of experimental structural studies that are enriched by an analysis of structure-activity relationships and will not consider studies that solely report structural information unless the structure or analysis is of exceptional and broad interest. Studies reporting only homology models, de novo models, or molecular dynamics simulations are also discouraged unless the models are informed by or validated by novel experimental data; rationalization of a large body of existing experimental evidence and making testable predictions based on a model or simulation is often not considered sufficient.