Mustafa H. Ahmed, Jinhyo Hwang, Bufan Xiao, Matthew R. Schiavone, Jagrity Chaudhary, Min Chen, Jianguo Mei
{"title":"Synthesis and Characterization of n-Doped Poly(benzodifurandione) (n-PBDF) Derivatives via Aromatic Substitution","authors":"Mustafa H. Ahmed, Jinhyo Hwang, Bufan Xiao, Matthew R. Schiavone, Jagrity Chaudhary, Min Chen, Jianguo Mei","doi":"10.1021/acs.macromol.4c02386","DOIUrl":null,"url":null,"abstract":"n-Doped poly(benzodifurandione) (<b>n-PBDF</b>) is an n-type conducting polymer with characteristics such as high electrical conductivity, solution processability, and weathering stability. Here, we systematically investigate the structure property relationship on the impact of structural modifications through aromatic substitution on the photophysical, electrical, and structural properties of <b>n-PBDF</b> and its oligomeric derivatives. We demonstrated that an electron donation group (methyl) raised the highest occupied molecular orbital energy level (+0.15 eV), while electron-withdrawing halogens (Br and Cl) decreased the lowest unoccupied molecular orbital energy level (−0.12 and −0.13 eV, respectively) in the polymers. Additionally, in both the undoped and doped oligomeric systems, these substitutions introduce large torsion angles (θ > 17°), causing the material to twist significantly. Moreover, the methyl-substituted polymer, <b>n-PBDF-Me</b>, was evaluated for its potential as a transparent organic conductor, due to its high optical transmittance (<i>T</i><sub>550</sub> > 93%). However, <b>n-PBDF-Me</b> films have significantly lower conductivity than <b>n-PBDF</b> (0.40 vs 1330 S/cm) at similar thickness.","PeriodicalId":51,"journal":{"name":"Macromolecules","volume":"16 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.macromol.4c02386","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
n-Doped poly(benzodifurandione) (n-PBDF) is an n-type conducting polymer with characteristics such as high electrical conductivity, solution processability, and weathering stability. Here, we systematically investigate the structure property relationship on the impact of structural modifications through aromatic substitution on the photophysical, electrical, and structural properties of n-PBDF and its oligomeric derivatives. We demonstrated that an electron donation group (methyl) raised the highest occupied molecular orbital energy level (+0.15 eV), while electron-withdrawing halogens (Br and Cl) decreased the lowest unoccupied molecular orbital energy level (−0.12 and −0.13 eV, respectively) in the polymers. Additionally, in both the undoped and doped oligomeric systems, these substitutions introduce large torsion angles (θ > 17°), causing the material to twist significantly. Moreover, the methyl-substituted polymer, n-PBDF-Me, was evaluated for its potential as a transparent organic conductor, due to its high optical transmittance (T550 > 93%). However, n-PBDF-Me films have significantly lower conductivity than n-PBDF (0.40 vs 1330 S/cm) at similar thickness.
期刊介绍:
Macromolecules publishes original, fundamental, and impactful research on all aspects of polymer science. Topics of interest include synthesis (e.g., controlled polymerizations, polymerization catalysis, post polymerization modification, new monomer structures and polymer architectures, and polymerization mechanisms/kinetics analysis); phase behavior, thermodynamics, dynamic, and ordering/disordering phenomena (e.g., self-assembly, gelation, crystallization, solution/melt/solid-state characteristics); structure and properties (e.g., mechanical and rheological properties, surface/interfacial characteristics, electronic and transport properties); new state of the art characterization (e.g., spectroscopy, scattering, microscopy, rheology), simulation (e.g., Monte Carlo, molecular dynamics, multi-scale/coarse-grained modeling), and theoretical methods. Renewable/sustainable polymers, polymer networks, responsive polymers, electro-, magneto- and opto-active macromolecules, inorganic polymers, charge-transporting polymers (ion-containing, semiconducting, and conducting), nanostructured polymers, and polymer composites are also of interest. Typical papers published in Macromolecules showcase important and innovative concepts, experimental methods/observations, and theoretical/computational approaches that demonstrate a fundamental advance in the understanding of polymers.