A high-response-frequency bimodal network polyacrylate elastomer with ultrahigh power density under low electric field

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2024-11-13 DOI:10.1038/s41467-024-54278-y
Li-Juan Yin, Boyuan Du, Hui-Yi Hu, Wen-Zhuo Dong, Yu Zhao, Zili Zhang, Huichan Zhao, Shao-Long Zhong, Chenyi Yi, Liangti Qu, Zhi-Min Dang
{"title":"A high-response-frequency bimodal network polyacrylate elastomer with ultrahigh power density under low electric field","authors":"Li-Juan Yin, Boyuan Du, Hui-Yi Hu, Wen-Zhuo Dong, Yu Zhao, Zili Zhang, Huichan Zhao, Shao-Long Zhong, Chenyi Yi, Liangti Qu, Zhi-Min Dang","doi":"10.1038/s41467-024-54278-y","DOIUrl":null,"url":null,"abstract":"<p>Dielectric elastomers, used as driver modules, require high power density to enable fast movement and efficient work of soft robots. Polyacrylate elastomers usually suffer from low power density under low electric fields due to limited response frequency. Here, we propose a bimodal network polyacrylate dielectric elastomer which breaks the intrinsic coupling relationship between dielectric and mechanical properties, featuring relatively high dielectric constant, low Young’s modulus, and wide driving frequency bandwidth (~200 Hz) like silicones. Therefore, an ultrahigh power density (154 W kg<sup>−1</sup>@20 MV m<sup>−1</sup>, 200 Hz) is realized at low electric field and high resonance frequency, 75 times greater than at 10 Hz. Further, a rotary motor is developed, reaching an impressive speed of 1245 rpm at 19.6 MV m<sup>−1</sup> and 125 Hz, surpassing previous acrylate-based motors and entering the high-speed domain of silicone-based motors. These findings offer a versatile strategy to fabricate high-power-density dielectric elastomers for low-electric-field soft actuators.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"12 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-54278-y","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Dielectric elastomers, used as driver modules, require high power density to enable fast movement and efficient work of soft robots. Polyacrylate elastomers usually suffer from low power density under low electric fields due to limited response frequency. Here, we propose a bimodal network polyacrylate dielectric elastomer which breaks the intrinsic coupling relationship between dielectric and mechanical properties, featuring relatively high dielectric constant, low Young’s modulus, and wide driving frequency bandwidth (~200 Hz) like silicones. Therefore, an ultrahigh power density (154 W kg−1@20 MV m−1, 200 Hz) is realized at low electric field and high resonance frequency, 75 times greater than at 10 Hz. Further, a rotary motor is developed, reaching an impressive speed of 1245 rpm at 19.6 MV m−1 and 125 Hz, surpassing previous acrylate-based motors and entering the high-speed domain of silicone-based motors. These findings offer a versatile strategy to fabricate high-power-density dielectric elastomers for low-electric-field soft actuators.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
低电场下具有超高功率密度的高响应频率双模网络聚丙烯酸酯弹性体
用作驱动模块的介电弹性体需要高功率密度,以实现软机器人的快速移动和高效工作。由于响应频率有限,聚丙烯酸酯弹性体通常在低电场下功率密度较低。在这里,我们提出了一种双模网络聚丙烯酸酯介电弹性体,它打破了介电性质与机械性质之间的内在耦合关系,具有相对较高的介电常数、较低的杨氏模量,以及像有机硅一样较宽的驱动频率带宽(约 200 Hz)。因此,在低电场和高共振频率下可实现超高功率密度(154 W kg-1@20 MV m-1,200 Hz),是 10 Hz 时的 75 倍。此外,还开发出一种旋转电机,在 19.6 MV m-1 和 125 Hz 的条件下达到了 1245 rpm 的惊人速度,超越了以前的丙烯酸酯电机,进入了硅基电机的高速领域。这些发现为制造用于低电场软致动器的高功率密度介电弹性体提供了一种通用策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
Electron delocalization in a 2D Mott insulator Engineered transcription-associated Cas9 targeting in eukaryotic cells Near-field acoustic imaging with a caged bubble Single-cell transcriptome analysis reveals CD34 as a marker of human sinoatrial node pacemaker cardiomyocytes The interplay of DNA repair context with target sequence predictably biases Cas9-generated mutations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1