Localized surface plasmon resonance effect–mediated in-situ photochemical–formation of H2O2 for high epoxidation performance over LaSrCoNiO6 nanoparticles

IF 6.5 1区 化学 Q2 CHEMISTRY, PHYSICAL Journal of Catalysis Pub Date : 2024-11-12 DOI:10.1016/j.jcat.2024.115841
Liru Song , Wenyu Wang , Jun Tang , Xu Guo , Xiantai Zhou , Qingping Ke
{"title":"Localized surface plasmon resonance effect–mediated in-situ photochemical–formation of H2O2 for high epoxidation performance over LaSrCoNiO6 nanoparticles","authors":"Liru Song ,&nbsp;Wenyu Wang ,&nbsp;Jun Tang ,&nbsp;Xu Guo ,&nbsp;Xiantai Zhou ,&nbsp;Qingping Ke","doi":"10.1016/j.jcat.2024.115841","DOIUrl":null,"url":null,"abstract":"<div><div>Selective aerobic epoxidation of allylic alcohols and olefins presents a promising solution to the modern chemical industry. However, the development of non-noble metal catalysts with superior catalytic performance for this reaction remains a significant challenge. This study introduces a plasmonic photothermal-catalytic system centered around nano LaSrCoNiO<sub>6</sub> (LSCNi-N) catalyst, enabling the epoxidation of cinnamyl alcohol and styrene mediated by LSPR effect under visible light illumination (&gt;420 nm). This catalyst exhibits superior epoxidation catalytic performance, with selectivities of up to 72.3 % in a 93.4 % conversion of cinnamyl alcohol and 91.8 % selectivity of styrene oxide at almost 100 % conversion of styrene. Mechanistic studies reveal that the high selectivity derives from the in-situ photochemical formation of H<sub>2</sub>O<sub>2</sub> mediated by the localized surface plasmon resonance effect of LSCNi-N and hole scavenger effect of cinnamyl alcohol. These findings highlight the potential of designing plasmonic transition-metal oxidic catalysts to overcome challenges in selectively synthesizing fine chemicals through visible light catalysis.</div></div>","PeriodicalId":346,"journal":{"name":"Journal of Catalysis","volume":"440 ","pages":"Article 115841"},"PeriodicalIF":6.5000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021951724005542","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Selective aerobic epoxidation of allylic alcohols and olefins presents a promising solution to the modern chemical industry. However, the development of non-noble metal catalysts with superior catalytic performance for this reaction remains a significant challenge. This study introduces a plasmonic photothermal-catalytic system centered around nano LaSrCoNiO6 (LSCNi-N) catalyst, enabling the epoxidation of cinnamyl alcohol and styrene mediated by LSPR effect under visible light illumination (>420 nm). This catalyst exhibits superior epoxidation catalytic performance, with selectivities of up to 72.3 % in a 93.4 % conversion of cinnamyl alcohol and 91.8 % selectivity of styrene oxide at almost 100 % conversion of styrene. Mechanistic studies reveal that the high selectivity derives from the in-situ photochemical formation of H2O2 mediated by the localized surface plasmon resonance effect of LSCNi-N and hole scavenger effect of cinnamyl alcohol. These findings highlight the potential of designing plasmonic transition-metal oxidic catalysts to overcome challenges in selectively synthesizing fine chemicals through visible light catalysis.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
局部表面等离子体共振效应介导的 H2O2 在 LaSrCoNiO6 纳米粒子上原位光化学转化,实现高环氧氧化性能
烯丙醇和烯烃的选择性有氧环氧化反应为现代化学工业提供了一种前景广阔的解决方案。然而,为该反应开发催化性能优越的非贵金属催化剂仍是一项重大挑战。本研究介绍了一种以纳米 LaSrCoNiO6(LSCNi-N)催化剂为核心的等离子体光热催化系统,在可见光(420 纳米)照射下,通过 LSPR 效应介导肉桂醇和苯乙烯的环氧化反应。这种催化剂具有卓越的环氧化催化性能,在肉桂醇 93.4% 的转化率下,其选择性高达 72.3%;在苯乙烯几乎 100% 的转化率下,其对氧化苯乙烯的选择性高达 91.8%。机理研究表明,高选择性源于 LSCNi-N 的局部表面等离子共振效应和肉桂醇的空穴清除效应介导的 H2O2 的原位光化学形成。这些发现凸显了设计质子过渡金属氧化催化剂的潜力,以克服通过可见光催化选择性合成精细化学品的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Catalysis
Journal of Catalysis 工程技术-工程:化工
CiteScore
12.30
自引率
5.50%
发文量
447
审稿时长
31 days
期刊介绍: The Journal of Catalysis publishes scholarly articles on both heterogeneous and homogeneous catalysis, covering a wide range of chemical transformations. These include various types of catalysis, such as those mediated by photons, plasmons, and electrons. The focus of the studies is to understand the relationship between catalytic function and the underlying chemical properties of surfaces and metal complexes. The articles in the journal offer innovative concepts and explore the synthesis and kinetics of inorganic solids and homogeneous complexes. Furthermore, they discuss spectroscopic techniques for characterizing catalysts, investigate the interaction of probes and reacting species with catalysts, and employ theoretical methods. The research presented in the journal should have direct relevance to the field of catalytic processes, addressing either fundamental aspects or applications of catalysis.
期刊最新文献
Detailing the redox ability of supported Pt-Sn and Pt-In catalysts for CO2-assisted PDH Minimizing CoxMn1-xO content in a Co2C catalyst for low CO2 selectivity in Fischer-Tropsch synthesis to olefins Enhancement of CuBr-based catalysts for aerobic alcohol oxidation enabled by rational design of bifunctional ligands featuring both a N-alkyl substituted ethylenediamine skeleton and a TEMPO moiety Selenium-modulated Pt/Al2O3 electronic structure induces deactivation during catalytic CO oxidation Enhanced metal-support interaction over Pd-Au/TiO2 catalysts for vinyl acetate synthesis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1