Infection-associated chronic conditions: Why Long Covid is our best chance to untangle Osler’s web

IF 15.8 1区 医学 Q1 CELL BIOLOGY Science Translational Medicine Pub Date : 2024-11-13 DOI:10.1126/scitranslmed.ado2101
Michael J. Peluso, Maureen R. Hanson, Steven G. Deeks
{"title":"Infection-associated chronic conditions: Why Long Covid is our best chance to untangle Osler’s web","authors":"Michael J. Peluso, Maureen R. Hanson, Steven G. Deeks","doi":"10.1126/scitranslmed.ado2101","DOIUrl":null,"url":null,"abstract":"The recognition of Long Covid has renewed efforts to understand other infection-associated chronic conditions (IACCs). Here, we describe how studies of Long Covid and other IACCs might inform one another. We argue for the importance of a coordinated research agenda addressing these debilitating illnesses.","PeriodicalId":21580,"journal":{"name":"Science Translational Medicine","volume":"6 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Translational Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1126/scitranslmed.ado2101","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The recognition of Long Covid has renewed efforts to understand other infection-associated chronic conditions (IACCs). Here, we describe how studies of Long Covid and other IACCs might inform one another. We argue for the importance of a coordinated research agenda addressing these debilitating illnesses.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
与感染相关的慢性病:为什么 Long Covid 是我们解开奥斯勒之网的最佳机会?
对 Long Covid 的认识再次推动了人们对其他感染相关慢性疾病(IACCs)的了解。在此,我们将介绍长Covid和其他IACCs的研究如何相互借鉴。我们认为,针对这些使人衰弱的疾病制定协调的研究议程非常重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Science Translational Medicine
Science Translational Medicine CELL BIOLOGY-MEDICINE, RESEARCH & EXPERIMENTAL
CiteScore
26.70
自引率
1.20%
发文量
309
审稿时长
1.7 months
期刊介绍: Science Translational Medicine is an online journal that focuses on publishing research at the intersection of science, engineering, and medicine. The goal of the journal is to promote human health by providing a platform for researchers from various disciplines to communicate their latest advancements in biomedical, translational, and clinical research. The journal aims to address the slow translation of scientific knowledge into effective treatments and health measures. It publishes articles that fill the knowledge gaps between preclinical research and medical applications, with a focus on accelerating the translation of knowledge into new ways of preventing, diagnosing, and treating human diseases. The scope of Science Translational Medicine includes various areas such as cardiovascular disease, immunology/vaccines, metabolism/diabetes/obesity, neuroscience/neurology/psychiatry, cancer, infectious diseases, policy, behavior, bioengineering, chemical genomics/drug discovery, imaging, applied physical sciences, medical nanotechnology, drug delivery, biomarkers, gene therapy/regenerative medicine, toxicology and pharmacokinetics, data mining, cell culture, animal and human studies, medical informatics, and other interdisciplinary approaches to medicine. The target audience of the journal includes researchers and management in academia, government, and the biotechnology and pharmaceutical industries. It is also relevant to physician scientists, regulators, policy makers, investors, business developers, and funding agencies.
期刊最新文献
Disrupting the RNA polymerase II transcription cycle through CDK7 inhibition ameliorates inflammatory arthritis NIT2 dampens BRD1 phase separation and restrains oxidative phosphorylation to enhance chemosensitivity in gastric cancer Delayed low-dose oral administration of 4′-fluorouridine inhibits pathogenic arenaviruses in animal models of lethal disease Vagal stimulation ameliorates murine colitis by regulating SUMOylation Genipin rescues developmental and degenerative defects in familial dysautonomia models and accelerates axon regeneration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1