Jinqi Deng, Shuai Zhao, Kai Xie, Chao Liu, Chuangui Sheng, Junhong Li, Bo Dai, Shuo Wan, Lele Li, Jiashu Sun
{"title":"Spherical DNA Nanomotors Enable Ultrasensitive Detection of Active Enzymes in Extracellular Vesicles for Cancer Diagnosis.","authors":"Jinqi Deng, Shuai Zhao, Kai Xie, Chao Liu, Chuangui Sheng, Junhong Li, Bo Dai, Shuo Wan, Lele Li, Jiashu Sun","doi":"10.1002/anie.202417165","DOIUrl":null,"url":null,"abstract":"<p><p>Enzymes encapsulated in extracellular vesicles (EVs) hold promise as biomarkers for early cancer diagnosis. However, precise measurement of their catalytic activities within EVs remains a notable challenge. Here, we report an enzymatically triggered spherical DNA nanomotor (EDM) that enables one-pot, cascaded, and highly sensitive analysis of the activity of EV-associated or free apurinic/apyrimidinic endonuclease 1 (APE1, a key enzyme in base excision repair) across various biological samples. The EDM capitalizes on APE1-triggered activation of DNAzyme (Dz) and its autonomous cleavage of substrates to achieve nonlinear signal amplification. Using EDM, we demonstrate a strong correlation between APE1 activity in EVs and that of their parental cancer cells. Additionally, EV APE1 mirrors the fluctuation of cellular APE1 activity in response to chemotherapy-induced DNA damage. In a pilot clinical study (n=63), the EDM-based assay reveals that more than 80 % of active APE1 in serum samples is EV-encapsulated. Notably, EV APE1 can differentiate early prostate cancer (PCa) patients from healthy donors (HDs) with an overall accuracy of 92 %, outperforming free APE1 in sera. We anticipate that EDM will become a versatile tool for quantifying EV-associated enzymes.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":" ","pages":"e202417165"},"PeriodicalIF":16.1000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202417165","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Enzymes encapsulated in extracellular vesicles (EVs) hold promise as biomarkers for early cancer diagnosis. However, precise measurement of their catalytic activities within EVs remains a notable challenge. Here, we report an enzymatically triggered spherical DNA nanomotor (EDM) that enables one-pot, cascaded, and highly sensitive analysis of the activity of EV-associated or free apurinic/apyrimidinic endonuclease 1 (APE1, a key enzyme in base excision repair) across various biological samples. The EDM capitalizes on APE1-triggered activation of DNAzyme (Dz) and its autonomous cleavage of substrates to achieve nonlinear signal amplification. Using EDM, we demonstrate a strong correlation between APE1 activity in EVs and that of their parental cancer cells. Additionally, EV APE1 mirrors the fluctuation of cellular APE1 activity in response to chemotherapy-induced DNA damage. In a pilot clinical study (n=63), the EDM-based assay reveals that more than 80 % of active APE1 in serum samples is EV-encapsulated. Notably, EV APE1 can differentiate early prostate cancer (PCa) patients from healthy donors (HDs) with an overall accuracy of 92 %, outperforming free APE1 in sera. We anticipate that EDM will become a versatile tool for quantifying EV-associated enzymes.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.