Steroid and bioactive molecule conjugates: Improving therapeutic approaches in disease management.

IF 4.5 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Bioorganic Chemistry Pub Date : 2024-11-05 DOI:10.1016/j.bioorg.2024.107933
Anna Kawka, Hanna Koenig, Tomasz Pospieszny
{"title":"Steroid and bioactive molecule conjugates: Improving therapeutic approaches in disease management.","authors":"Anna Kawka, Hanna Koenig, Tomasz Pospieszny","doi":"10.1016/j.bioorg.2024.107933","DOIUrl":null,"url":null,"abstract":"<p><p>Conjugates of steroids and other natural bioactive molecules (such as amino acids or carbohydrates) have proven promising compounds with diverse biological effects. This literature review summarises the importance of steroid conjugates in a broad spectrum of therapeutic applications. Steroid conjugates exhibit improved pharmacokinetic properties, improved target specificity, and reduced side effects compared to the parent compounds. This increases their clinical usefulness. Their versatility extends to drug delivery systems, enabling precise modulation of drug release kinetics and bioavailability. Moreover, steroid conjugates are vital in treating inflammatory and neurodegenerative diseases, hormonal disorders, cancer therapy, and combating microbial infections. The review presents the current state of research on steroid conjugates, highlighting the crucial role of steroid conjugates in modern medicine and their potential to revolutionise therapeutic paradigms and improve patient outcomes. Steroid compounds are excellent for developing agents with better bioavailability and are used as drug carriers or hydrogelators.</p>","PeriodicalId":257,"journal":{"name":"Bioorganic Chemistry","volume":"153 ","pages":"107933"},"PeriodicalIF":4.5000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.bioorg.2024.107933","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Conjugates of steroids and other natural bioactive molecules (such as amino acids or carbohydrates) have proven promising compounds with diverse biological effects. This literature review summarises the importance of steroid conjugates in a broad spectrum of therapeutic applications. Steroid conjugates exhibit improved pharmacokinetic properties, improved target specificity, and reduced side effects compared to the parent compounds. This increases their clinical usefulness. Their versatility extends to drug delivery systems, enabling precise modulation of drug release kinetics and bioavailability. Moreover, steroid conjugates are vital in treating inflammatory and neurodegenerative diseases, hormonal disorders, cancer therapy, and combating microbial infections. The review presents the current state of research on steroid conjugates, highlighting the crucial role of steroid conjugates in modern medicine and their potential to revolutionise therapeutic paradigms and improve patient outcomes. Steroid compounds are excellent for developing agents with better bioavailability and are used as drug carriers or hydrogelators.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
类固醇和生物活性分子共轭物:改进疾病治疗方法。
类固醇和其他天然生物活性分子(如氨基酸或碳水化合物)的共轭物已被证明是具有多种生物效应的有前途的化合物。本文献综述总结了类固醇共轭物在广泛治疗应用中的重要性。与母体化合物相比,类固醇共轭物具有更好的药代动力学特性、更强的靶向特异性和更低的副作用。这增加了它们的临床用途。它们的多功能性还延伸到了给药系统,可以精确调节药物释放动力学和生物利用度。此外,类固醇共轭物在治疗炎症和神经退行性疾病、荷尔蒙紊乱、癌症治疗和抗微生物感染方面也非常重要。这篇综述介绍了类固醇共轭物的研究现状,强调了类固醇共轭物在现代医学中的重要作用,以及它们在革新治疗模式和改善患者预后方面的潜力。类固醇化合物是开发生物利用度更高的药物的绝佳材料,可用作药物载体或水凝胶剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Bioorganic Chemistry
Bioorganic Chemistry 生物-生化与分子生物学
CiteScore
9.70
自引率
3.90%
发文量
679
审稿时长
31 days
期刊介绍: Bioorganic Chemistry publishes research that addresses biological questions at the molecular level, using organic chemistry and principles of physical organic chemistry. The scope of the journal covers a range of topics at the organic chemistry-biology interface, including: enzyme catalysis, biotransformation and enzyme inhibition; nucleic acids chemistry; medicinal chemistry; natural product chemistry, natural product synthesis and natural product biosynthesis; antimicrobial agents; lipid and peptide chemistry; biophysical chemistry; biological probes; bio-orthogonal chemistry and biomimetic chemistry. For manuscripts dealing with synthetic bioactive compounds, the Journal requires that the molecular target of the compounds described must be known, and must be demonstrated experimentally in the manuscript. For studies involving natural products, if the molecular target is unknown, some data beyond simple cell-based toxicity studies to provide insight into the mechanism of action is required. Studies supported by molecular docking are welcome, but must be supported by experimental data. The Journal does not consider manuscripts that are purely theoretical or computational in nature. The Journal publishes regular articles, short communications and reviews. Reviews are normally invited by Editors or Editorial Board members. Authors of unsolicited reviews should first contact an Editor or Editorial Board member to determine whether the proposed article is within the scope of the Journal.
期刊最新文献
Sodium cromoglycate exerts anti-pulmonary fibrosis effects by targeting the Keap1 protein to activate Nrf2 signaling. Analysis of the effects of differently charged peptides on α-amylase and their interaction mechanisms. Development of an at-line coupling of LC-QTOF-ESI-MS/MS to steroid 5-alpha reductase inhibition assay, a fast bioactive targeting and guided purification of natural complex sample, Impatiens balsamina Linn. In vitro anti-inflammatory activity and molecular docking of Peperomia pellucida (L.) Kunth extract via the NF-κB and PPAR-γ signalling in human retinal pigment epithelial cells. Design, synthesis, and antiproliferative activity evaluation of novel α-mangostin derivatives by ROS/MAPK signaling pathway.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1