Bismuth and Fluorine Dual-Doping of Lithium Argyrodite toward High-Performance All-Solid-State Lithium Metal Batteries.

IF 7.5 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY ChemSusChem Pub Date : 2024-11-07 DOI:10.1002/cssc.202401664
Ziling Jiang, Yujie Xiao, Lin Li, Siwu Li, Qiyue Luo, Chuang Yu
{"title":"Bismuth and Fluorine Dual-Doping of Lithium Argyrodite toward High-Performance All-Solid-State Lithium Metal Batteries.","authors":"Ziling Jiang, Yujie Xiao, Lin Li, Siwu Li, Qiyue Luo, Chuang Yu","doi":"10.1002/cssc.202401664","DOIUrl":null,"url":null,"abstract":"<p><p>Chlorine-rich lithium argyrodite is considered as a promising superionic conductor electrolyte, but its practical application is limited due to poor air stability and instability toward lithium metal. In this work, BiF<sub>3</sub> is proposed as a multi-functional dopant for electrolyte modification, and the effects on the ionic conductivity, air stability, critical current density, and electrolyte/Li metal interfacial stability are studied. The results show that the doped electrolyte Li<sub>5.54</sub>P<sub>0.98</sub>Bi<sub>0.02</sub>S<sub>4.5</sub>Cl<sub>1.44</sub>F<sub>0.06</sub> (LPBiSClF<sub>0.06</sub>) still maintains a relatively high ionic conductivity of 5.37 mS cm<sup>-1</sup>. Additionally, the formation of BiS<sub>4</sub> <sup>5-</sup> unit and LiBiS<sub>2</sub> phase provides high air/moisture resistibility. Meanwhile, the critical current density of the Li/LPBiSClF<sub>0.06</sub>/Li cell is increased two-fold (2.1 mA cm<sup>-2</sup>). The in-situ formation of LiF and Li-Bi alloy at the lithium metal/electrolyte interface plays a key role in achieving high performance. As a result, the assembled LCO@LNO/LPBiSClF<sub>0.06</sub>/Li battery retains 78.4 % of its capacity after 100 cycles at 0.2C.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202401664"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202401664","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Chlorine-rich lithium argyrodite is considered as a promising superionic conductor electrolyte, but its practical application is limited due to poor air stability and instability toward lithium metal. In this work, BiF3 is proposed as a multi-functional dopant for electrolyte modification, and the effects on the ionic conductivity, air stability, critical current density, and electrolyte/Li metal interfacial stability are studied. The results show that the doped electrolyte Li5.54P0.98Bi0.02S4.5Cl1.44F0.06 (LPBiSClF0.06) still maintains a relatively high ionic conductivity of 5.37 mS cm-1. Additionally, the formation of BiS4 5- unit and LiBiS2 phase provides high air/moisture resistibility. Meanwhile, the critical current density of the Li/LPBiSClF0.06/Li cell is increased two-fold (2.1 mA cm-2). The in-situ formation of LiF and Li-Bi alloy at the lithium metal/electrolyte interface plays a key role in achieving high performance. As a result, the assembled LCO@LNO/LPBiSClF0.06/Li battery retains 78.4 % of its capacity after 100 cycles at 0.2C.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
实现高性能全固态锂金属电池的铋和氟双掺杂箭石。
富含氯的箭石锂被认为是一种很有前途的超离子导体电解质,但由于其空气稳定性差且对锂金属不稳定,其实际应用受到限制。本研究提出了一种多功能掺杂剂 BiF3 用于电解质改性,并研究了其对离子电导率、空气稳定性、临界电流密度和电解质/锂金属界面稳定性的影响。结果表明,掺杂电解质 Li5.54P0.98Bi0.02S4.5Cl1.44F0.06 (LPBiSClF0.06)仍能保持相对较高的离子电导率(5.37 mS cm-1)。此外,BiS45- 单元和 LiBiS2 相的形成还提供了较高的抗空气/湿气性能。同时,锂/LPBiSClF0.06/锂电池的临界电流密度提高了两倍(2.1 mA cm-2)。在锂金属/电解质界面原位形成 LiF 和 Li-Bi 合金对实现高性能起着关键作用。因此,组装好的 LCO@LNO/LPBiSClF0.06/Li 电池在 0.2C 下循环 100 次后仍能保持 78.4% 的容量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
期刊最新文献
Covalent Organic Frameworks with Regulated Water Adsorption Sites for Efficient Cooling of Electronics. A TEMPO-N3 Complex Enables the Electrochemical C-H Azidation of N-Heterocycles through the Cleavage of Alkoxyamines. PEI-templated ZIF-8 nanoparticles impart the NF membrane with high Mg2+/Li+ separation performance. Green Electrochemical Point-of-Care Devices: Transient Materials and Sustainable Fabrication Methods. Metal-free N, P-Codoped Carbon for Syngas Production with Tunable Composition via CO2 Electrolysis: Addressing the Competition Between CO2 Reduction and H2 Evolution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1