{"title":"Recycling Solid Electrolytes from All-Solid-State Lithium-Ion Batteries by Using Deep Eutectic Solvents as Green Extractants.","authors":"Yu Chen, Zhuojia Shi, Xueqing Zhang, Chenyang Wang, Yanlong Wang, Zihang Niu, Yuqing Zhang, Minghui Feng","doi":"10.1002/cssc.202402126","DOIUrl":null,"url":null,"abstract":"<p><p>All-solid-state lithium-ion batteries (ASSLIBs) are attracting significant attention due to their high energy density, conductivity and safety. However, they are expected to generate substantial waste in the near future, leading to resource depletion and environmental pollution. Therefore, it is crucial to achieve green, mild and safe recovery of ASSLIBs. Here, we for the first time to use green deep eutectic solvents (DESs) to effectively recover solid-state electrolytes (SSEs) from ASSLIBs at mild temperature. Results show that Li leaching efficiency can reach up to 87.5% with a superhigh Li/La selectivity of 1902 at a low temperature of 80 oC. Furthermore, 70 anti-solvents are screened to recycle the dissolved SSEs from leachate and 12 anti-solvents could precipitate SSEs from leachate at room temperature. This research opens new possibilities for recovering SSEs from ASSLIBs using the sustainable, cost-effective and safe solvents.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202402126"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202402126","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
All-solid-state lithium-ion batteries (ASSLIBs) are attracting significant attention due to their high energy density, conductivity and safety. However, they are expected to generate substantial waste in the near future, leading to resource depletion and environmental pollution. Therefore, it is crucial to achieve green, mild and safe recovery of ASSLIBs. Here, we for the first time to use green deep eutectic solvents (DESs) to effectively recover solid-state electrolytes (SSEs) from ASSLIBs at mild temperature. Results show that Li leaching efficiency can reach up to 87.5% with a superhigh Li/La selectivity of 1902 at a low temperature of 80 oC. Furthermore, 70 anti-solvents are screened to recycle the dissolved SSEs from leachate and 12 anti-solvents could precipitate SSEs from leachate at room temperature. This research opens new possibilities for recovering SSEs from ASSLIBs using the sustainable, cost-effective and safe solvents.
期刊介绍:
ChemSusChem
Impact Factor (2016): 7.226
Scope:
Interdisciplinary journal
Focuses on research at the interface of chemistry and sustainability
Features the best research on sustainability and energy
Areas Covered:
Chemistry
Materials Science
Chemical Engineering
Biotechnology