Lin Tang, Fengjuan Jia, Ruijun Yu, Lufang Zhang, Qiuju Zhou
{"title":"Visible light-driven and substrate-promoted alkenyltrifluoromethylation of alkenes to synthesize CF<sub>3</sub>-functionalized 1,4-naphthoquinones.","authors":"Lin Tang, Fengjuan Jia, Ruijun Yu, Lufang Zhang, Qiuju Zhou","doi":"10.1039/d4ob01585a","DOIUrl":null,"url":null,"abstract":"<p><p>The first example of the visible light-driven and substrate-promoted three-component alkenyltrifluoromethylation of alkenes is developed. This approach uses easily available alkenes, 2-arylamino-1,4-naphthoquinones and Togni reagent as the reactants, and describes good functionality tolerance. The reaction offers a precise synthesis of valuable CF<sub>3</sub>-functionalized 1,4-naphthoquinones and can be applied in late-stage modification of natural products and pharmaceuticals. Experimental results imply that bifunctional 2-arylamino-1,4-naphthoquinones serve as both substrates and catalysts. In terms of this autocatalytic system, the protocol enables a straightforward intermolecular difunctionalization of alkenes under visible light irradiation without external catalysts.</p>","PeriodicalId":96,"journal":{"name":"Organic & Biomolecular Chemistry","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic & Biomolecular Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4ob01585a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0
Abstract
The first example of the visible light-driven and substrate-promoted three-component alkenyltrifluoromethylation of alkenes is developed. This approach uses easily available alkenes, 2-arylamino-1,4-naphthoquinones and Togni reagent as the reactants, and describes good functionality tolerance. The reaction offers a precise synthesis of valuable CF3-functionalized 1,4-naphthoquinones and can be applied in late-stage modification of natural products and pharmaceuticals. Experimental results imply that bifunctional 2-arylamino-1,4-naphthoquinones serve as both substrates and catalysts. In terms of this autocatalytic system, the protocol enables a straightforward intermolecular difunctionalization of alkenes under visible light irradiation without external catalysts.