Anna S Huang, Ralf D Wimmer, Norman H Lam, Bin A Wang, Sahil Suresh, Maxwell J Roeske, Burkhard Pleger, Michael M Halassa, Neil D Woodward
{"title":"A prefrontal thalamocortical readout for conflict-related executive dysfunction in schizophrenia.","authors":"Anna S Huang, Ralf D Wimmer, Norman H Lam, Bin A Wang, Sahil Suresh, Maxwell J Roeske, Burkhard Pleger, Michael M Halassa, Neil D Woodward","doi":"10.1016/j.xcrm.2024.101802","DOIUrl":null,"url":null,"abstract":"<p><p>Executive dysfunction is a prominent feature of schizophrenia and may drive core symptoms. Dorsolateral prefrontal cortex (dlPFC) deficits have been linked to schizophrenia executive dysfunction, but mechanistic details critical for treatment development remain unclear. Here, capitalizing on recent animal circuit studies, we develop a task predicted to engage human dlPFC and its interactions with the mediodorsal thalamus (MD). We find that individuals with schizophrenia exhibit selective performance deficits when attention is guided by conflicting cues. Task performance correlates with lateralized MD-dlPFC functional connectivity, identifying a neural readout that predicts susceptibility to conflict during working memory in a larger independent schizophrenia cohort. In healthy subjects performing a probabilistic reversal task, this MD-dlPFC network predicts switching behavior. Overall, our three independent experiments introduce putative biomarkers for executive function in schizophrenia and highlight animal circuit studies as inspiration for the development of clinically relevant readouts.</p>","PeriodicalId":9822,"journal":{"name":"Cell Reports Medicine","volume":" ","pages":"101802"},"PeriodicalIF":11.7000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.xcrm.2024.101802","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Executive dysfunction is a prominent feature of schizophrenia and may drive core symptoms. Dorsolateral prefrontal cortex (dlPFC) deficits have been linked to schizophrenia executive dysfunction, but mechanistic details critical for treatment development remain unclear. Here, capitalizing on recent animal circuit studies, we develop a task predicted to engage human dlPFC and its interactions with the mediodorsal thalamus (MD). We find that individuals with schizophrenia exhibit selective performance deficits when attention is guided by conflicting cues. Task performance correlates with lateralized MD-dlPFC functional connectivity, identifying a neural readout that predicts susceptibility to conflict during working memory in a larger independent schizophrenia cohort. In healthy subjects performing a probabilistic reversal task, this MD-dlPFC network predicts switching behavior. Overall, our three independent experiments introduce putative biomarkers for executive function in schizophrenia and highlight animal circuit studies as inspiration for the development of clinically relevant readouts.
Cell Reports MedicineBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
15.00
自引率
1.40%
发文量
231
审稿时长
40 days
期刊介绍:
Cell Reports Medicine is an esteemed open-access journal by Cell Press that publishes groundbreaking research in translational and clinical biomedical sciences, influencing human health and medicine.
Our journal ensures wide visibility and accessibility, reaching scientists and clinicians across various medical disciplines. We publish original research that spans from intriguing human biology concepts to all aspects of clinical work. We encourage submissions that introduce innovative ideas, forging new paths in clinical research and practice. We also welcome studies that provide vital information, enhancing our understanding of current standards of care in diagnosis, treatment, and prognosis. This encompasses translational studies, clinical trials (including long-term follow-ups), genomics, biomarker discovery, and technological advancements that contribute to diagnostics, treatment, and healthcare. Additionally, studies based on vertebrate model organisms are within the scope of the journal, as long as they directly relate to human health and disease.