Beyond expectations: the development and biological activity of cytokinin oxidase/dehydrogenase inhibitors.

IF 3.8 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochemical Society transactions Pub Date : 2024-11-07 DOI:10.1042/BST20231561
Jaroslav Nisler
{"title":"Beyond expectations: the development and biological activity of cytokinin oxidase/dehydrogenase inhibitors.","authors":"Jaroslav Nisler","doi":"10.1042/BST20231561","DOIUrl":null,"url":null,"abstract":"<p><p>Cytokinins are one of the main groups of plant hormones that regulate growth and development of plants. Cytokinin oxidase/dehydrogenase (CKX) is an enzyme that rapidly and irreversibly degrades cytokinins and thus directly affects their concentration and physiological effect. Genetically modified plants with reduced CKX activity in the shoot, i.e. with a higher concentration of cytokinins, showed e.g. increased tolerance to drought stress, formed larger inflorescences and had higher grain yield. For these reasons, chemical compounds capable of inhibiting the CKX activity (CKX inhibitors) were sought. First, they were identified among strong synthetic cytokinins, but their inhibitory activity was low. The trend has been to develop potent CKX inhibitors with minimal intrinsic cytokinin activity in the hope of avoiding the negative effect of cytokinins on root growth. Cloning CKX, production of key recombinant enzymes from Arabidopsis (AtCKX2) and maize (ZmCKX1 and ZmCKX4a), development of screening bioassays and progress in X-ray crystallography and synthetic organic chemistry led to extensive progress in the development of these compounds. Currently, the most suitable CKX inhibitors are seeking their application in research and the commercial sphere in two main areas - plant tissue cultures and agriculture. The key milestones that preceded it are summarized in this review.</p>","PeriodicalId":8841,"journal":{"name":"Biochemical Society transactions","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Society transactions","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1042/BST20231561","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cytokinins are one of the main groups of plant hormones that regulate growth and development of plants. Cytokinin oxidase/dehydrogenase (CKX) is an enzyme that rapidly and irreversibly degrades cytokinins and thus directly affects their concentration and physiological effect. Genetically modified plants with reduced CKX activity in the shoot, i.e. with a higher concentration of cytokinins, showed e.g. increased tolerance to drought stress, formed larger inflorescences and had higher grain yield. For these reasons, chemical compounds capable of inhibiting the CKX activity (CKX inhibitors) were sought. First, they were identified among strong synthetic cytokinins, but their inhibitory activity was low. The trend has been to develop potent CKX inhibitors with minimal intrinsic cytokinin activity in the hope of avoiding the negative effect of cytokinins on root growth. Cloning CKX, production of key recombinant enzymes from Arabidopsis (AtCKX2) and maize (ZmCKX1 and ZmCKX4a), development of screening bioassays and progress in X-ray crystallography and synthetic organic chemistry led to extensive progress in the development of these compounds. Currently, the most suitable CKX inhibitors are seeking their application in research and the commercial sphere in two main areas - plant tissue cultures and agriculture. The key milestones that preceded it are summarized in this review.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超越期望:细胞分裂素氧化酶/脱氢酶抑制剂的开发和生物活性。
细胞分裂素是调节植物生长和发育的主要植物激素类之一。细胞分裂素氧化酶/脱氢酶(CKX)是一种能快速、不可逆地降解细胞分裂素的酶,因此直接影响细胞分裂素的浓度和生理效应。转基因植物的嫩枝中 CKX 活性降低,即细胞分裂素浓度升高,表现出对干旱胁迫更强的耐受性,形成更大的花序,谷物产量更高。因此,人们开始寻找能够抑制 CKX 活性的化合物(CKX 抑制剂)。首先,在强合成细胞分裂素中发现了它们,但其抑制活性较低。目前的趋势是开发具有最小内在细胞分裂素活性的强效 CKX 抑制剂,希望避免细胞分裂素对根系生长的负面影响。克隆 CKX、从拟南芥(AtCKX2)和玉米(ZmCKX1 和 ZmCKX4a)中生产关键重组酶、开发筛选生物测定方法以及在 X 射线晶体学和合成有机化学方面取得进展,使得这些化合物的开发取得了广泛进展。目前,最合适的 CKX 抑制剂正在植物组织培养和农业两大领域的研究和商业领域寻求应用。本综述总结了之前的重要里程碑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biochemical Society transactions
Biochemical Society transactions 生物-生化与分子生物学
CiteScore
7.80
自引率
0.00%
发文量
351
审稿时长
3-6 weeks
期刊介绍: Biochemical Society Transactions is the reviews journal of the Biochemical Society. Publishing concise reviews written by experts in the field, providing a timely snapshot of the latest developments across all areas of the molecular and cellular biosciences. Elevating our authors’ ideas and expertise, each review includes a perspectives section where authors offer comment on the latest advances, a glimpse of future challenges and highlighting the importance of associated research areas in far broader contexts.
期刊最新文献
Advances in utilizing reverse micelles to investigate membrane proteins. Beyond expectations: the development and biological activity of cytokinin oxidase/dehydrogenase inhibitors. Untangling bacterial DNA topoisomerases functions. Advances in the molecular understanding of GPCR-arrestin complexes. Unusual modes of cell and nuclear divisions characterise Drosophila development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1