Bruno A Oliveira, Filipe Gonçalves de Oliveira, Otávio de Assis Cruz, Pollyana Mendonça de Assis, Glanzmann Nícolas, Adilson David da Silva, Nádia Rezende Barbosa Raposo, Priscila Vanessa Zabala Capriles Goliatt
{"title":"In Silico and In Vitro Evaluation of Quinoline Derivatives as Potential Inhibitors of AChE, BACE1, and GSK3β for Neurodegenerative Diseases Treatment.","authors":"Bruno A Oliveira, Filipe Gonçalves de Oliveira, Otávio de Assis Cruz, Pollyana Mendonça de Assis, Glanzmann Nícolas, Adilson David da Silva, Nádia Rezende Barbosa Raposo, Priscila Vanessa Zabala Capriles Goliatt","doi":"10.1002/cbdv.202401629","DOIUrl":null,"url":null,"abstract":"<p><p>Neurodegenerative diseases are characterized by the structural and functional loss of neurons, affecting populations worldwide. Enzymes like acetylcholinesterase (AChE), beta-site APP cleaving enzyme-1 (BACE1), and glycogen synthase kinase 3-beta (GSK3β), contribute to their development. This study explores in silico and in vitro assays of quinoline analogues as potential inhibitors of these enzymes. In silico analyses highlighted derivative SQ6 as the most potent inhibitor for all proteins. In vitro assays confirmed that the quinoline derivatives had a modulating action on the three targets. SQ6 showed a significant AChE inhibition of 94.6%. Regarding the inhibition of GSK3β and BACE1, derivatives SQ6-SQ9, with the quinoline linked to the sulfonamide nitrogen, showed inhibition values above 40%. SQ7 and SQ9 were not considered cytotoxic for cell proliferation in human glioblastoma, and SQ6 did not show cytotoxicity at 7.8 and 3.9 µg mL-1. In murine fibroblasts, SQ6 presented a result similar to that observed for cell proliferation in human glioblastoma, while SQ7 and SQ9 were non-cytotoxic below 62.5 µg mL-1. These findings underscore compound SQ6 as the first potential multitarget enzyme inhibitor for treating neurodegenerative diseases.</p>","PeriodicalId":9878,"journal":{"name":"Chemistry & Biodiversity","volume":" ","pages":"e202401629"},"PeriodicalIF":2.3000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry & Biodiversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cbdv.202401629","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Neurodegenerative diseases are characterized by the structural and functional loss of neurons, affecting populations worldwide. Enzymes like acetylcholinesterase (AChE), beta-site APP cleaving enzyme-1 (BACE1), and glycogen synthase kinase 3-beta (GSK3β), contribute to their development. This study explores in silico and in vitro assays of quinoline analogues as potential inhibitors of these enzymes. In silico analyses highlighted derivative SQ6 as the most potent inhibitor for all proteins. In vitro assays confirmed that the quinoline derivatives had a modulating action on the three targets. SQ6 showed a significant AChE inhibition of 94.6%. Regarding the inhibition of GSK3β and BACE1, derivatives SQ6-SQ9, with the quinoline linked to the sulfonamide nitrogen, showed inhibition values above 40%. SQ7 and SQ9 were not considered cytotoxic for cell proliferation in human glioblastoma, and SQ6 did not show cytotoxicity at 7.8 and 3.9 µg mL-1. In murine fibroblasts, SQ6 presented a result similar to that observed for cell proliferation in human glioblastoma, while SQ7 and SQ9 were non-cytotoxic below 62.5 µg mL-1. These findings underscore compound SQ6 as the first potential multitarget enzyme inhibitor for treating neurodegenerative diseases.
期刊介绍:
Chemistry & Biodiversity serves as a high-quality publishing forum covering a wide range of biorelevant topics for a truly international audience. This journal publishes both field-specific and interdisciplinary contributions on all aspects of biologically relevant chemistry research in the form of full-length original papers, short communications, invited reviews, and commentaries. It covers all research fields straddling the border between the chemical and biological sciences, with the ultimate goal of broadening our understanding of how nature works at a molecular level.
Since 2017, Chemistry & Biodiversity is published in an online-only format.