Development of a novel hyaluronic acid/alginate/RANKL degradable microneedle patch for accelerating bone remodeling and orthodontic tooth movement through promoting osteoclastogenesis.

IF 5.3 2区 医学 Q1 PHARMACOLOGY & PHARMACY International Journal of Pharmaceutics Pub Date : 2024-11-05 DOI:10.1016/j.ijpharm.2024.124915
Yue Shan, Yu Jin, Xiaoqi Zhang, Yufei Tang, Wenli Lai, Jinfeng Liao, Mengjie Wu, Hu Long
{"title":"Development of a novel hyaluronic acid/alginate/RANKL degradable microneedle patch for accelerating bone remodeling and orthodontic tooth movement through promoting osteoclastogenesis.","authors":"Yue Shan, Yu Jin, Xiaoqi Zhang, Yufei Tang, Wenli Lai, Jinfeng Liao, Mengjie Wu, Hu Long","doi":"10.1016/j.ijpharm.2024.124915","DOIUrl":null,"url":null,"abstract":"<p><p>The prolonged duration of orthodontic treatment remains a significant concern for both orthodontists and patients. In this study, we developed a degradable microneedle (MN) patch composed of hyaluronic acid (HA) and sodium alginate (SA) for the delivery of receptor activator of nuclear factor-kappa B ligand (RANKL) to accelerate tooth movement. This MN patch which was crosslinked by calcium chloride (CaCl<sub>2</sub>) exhibits adequate mechanical properties and favorable in vitro mucosal insertion ability. Moreover, the MN patch can achieve the sustained release of RANKL and maintain the biological stability of RANKL protein after one month of storage at -20 °C, 4 °C, or 37 °C. In vitro experiments using RAW264.7 cells indicated that the HA/SA/RANKL MN possessed excellent biocompatibility and could effectively induce osteoclast differentiation. In vivo application of the HA/SA/RANKL MN in rat models showed a remarkable effect in promoting osteoclast formation and accelerating tooth movement. These findings suggest that the degradable HA/SA/RANKL MN holds significant potential for enhancing tooth movement efficiency.</p>","PeriodicalId":14187,"journal":{"name":"International Journal of Pharmaceutics","volume":" ","pages":"124915"},"PeriodicalIF":5.3000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ijpharm.2024.124915","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

The prolonged duration of orthodontic treatment remains a significant concern for both orthodontists and patients. In this study, we developed a degradable microneedle (MN) patch composed of hyaluronic acid (HA) and sodium alginate (SA) for the delivery of receptor activator of nuclear factor-kappa B ligand (RANKL) to accelerate tooth movement. This MN patch which was crosslinked by calcium chloride (CaCl2) exhibits adequate mechanical properties and favorable in vitro mucosal insertion ability. Moreover, the MN patch can achieve the sustained release of RANKL and maintain the biological stability of RANKL protein after one month of storage at -20 °C, 4 °C, or 37 °C. In vitro experiments using RAW264.7 cells indicated that the HA/SA/RANKL MN possessed excellent biocompatibility and could effectively induce osteoclast differentiation. In vivo application of the HA/SA/RANKL MN in rat models showed a remarkable effect in promoting osteoclast formation and accelerating tooth movement. These findings suggest that the degradable HA/SA/RANKL MN holds significant potential for enhancing tooth movement efficiency.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
开发新型透明质酸/海藻酸/RANKL可降解微针贴片,通过促进破骨细胞生成加速骨重塑和正畸牙齿移动。
正畸治疗的持续时间过长仍然是正畸医生和患者都非常关心的问题。在这项研究中,我们开发了一种由透明质酸(HA)和海藻酸钠(SA)组成的可降解微针(MN)贴片,用于递送核因子卡巴B受体激活剂配体(RANKL)以加速牙齿移动。这种由氯化钙(CaCl2)交联的 MN 补丁具有足够的机械性能和良好的体外粘膜插入能力。此外,该 MN 贴片还能实现 RANKL 的持续释放,并在 -20℃、4℃ 或 37℃条件下保存一个月后仍能保持 RANKL 蛋白的生物稳定性。使用 RAW264.7 细胞进行的体外实验表明,HA/SA/RANKL MN 具有良好的生物相容性,能有效诱导破骨细胞分化。将 HA/SA/RANKL MN 应用于大鼠模型的体内实验表明,它在促进破骨细胞形成和加速牙齿移动方面效果显著。这些研究结果表明,可降解的 HA/SA/RANKL MN 在提高牙齿移动效率方面具有巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.70
自引率
8.60%
发文量
951
审稿时长
72 days
期刊介绍: The International Journal of Pharmaceutics is the third most cited journal in the "Pharmacy & Pharmacology" category out of 366 journals, being the true home for pharmaceutical scientists concerned with the physical, chemical and biological properties of devices and delivery systems for drugs, vaccines and biologicals, including their design, manufacture and evaluation. This includes evaluation of the properties of drugs, excipients such as surfactants and polymers and novel materials. The journal has special sections on pharmaceutical nanotechnology and personalized medicines, and publishes research papers, reviews, commentaries and letters to the editor as well as special issues.
期刊最新文献
Corrigendum to "Evaluation of binders in twin-screw wet granulation - Optimization of tabletability" [Int. J. Pharm. 659 (2024) 124290]. Critical assessment of purification processes for the robust production of polymeric nanomedicine. Development and evaluation of innovative enteric-coated capsules for colon-specific delivery of hydrophilic biomaterials. Nanocarriers-based therapeutic strategy for drug-resistant epilepsy: A systematic review. Light-responsive antibacterial dissolving microneedles loaded with 5-aminolevulinic acid and silver nanoparticles for the treatment of acne.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1