Baicalein suppresses inflammation and attenuates acute lung injury by inhibiting glycolysis via HIF‑1α signaling.

IF 3.4 3区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL Molecular medicine reports Pub Date : 2025-01-01 Epub Date: 2024-11-08 DOI:10.3892/mmr.2024.13383
Zhongyou Liu, Xiaona Zheng, Ning Li, Zongyao Wang
{"title":"Baicalein suppresses inflammation and attenuates acute lung injury by inhibiting glycolysis via HIF‑1α signaling.","authors":"Zhongyou Liu, Xiaona Zheng, Ning Li, Zongyao Wang","doi":"10.3892/mmr.2024.13383","DOIUrl":null,"url":null,"abstract":"<p><p>Baicalein, a flavonoid monomer compound isolated from the dried root of the traditional Chinese herb <i>Scutellaria baicalensis</i>, has several pharmacological activities, such as anti‑inflammatory, anti‑angiogenic, antitumor, antimicrobial and antiviral properties. Acute lung injury (ALI) is characterized by injury of the alveolar epithelium and capillary endothelium, which results in decreased lung volume, decreased lung compliance, ventilation/perfusion mismatch, intrapulmonary edema, alveolar edema and even acute hypoxemic respiratory failure. The present study aimed to investigate the effects of baicalein on lung injury and inflammation. Bioinformatics analysis using network pharmacology predicted that the hypoxia inducible factor‑1α (HIF‑1α) and glycolysis signaling pathways were involved in the mechanism underlying the therapeutic effects of baicalein. Further <i>in vitro</i> and <i>in vivo</i> experiments, such as immunohistochemistry, immunofluorescence and PCR, verified that baicalein could inhibit HIF‑1α signaling, thus suppressing glycolysis, and improving inflammatory responses and ALI. Taken together, the results of the present study suggested that the anti‑inflammatory effects of baicalein on treating ALI were associated with its ability to suppress glycolysis via the HIF‑1α signaling pathway.</p>","PeriodicalId":18818,"journal":{"name":"Molecular medicine reports","volume":"31 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11564906/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular medicine reports","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3892/mmr.2024.13383","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/8 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Baicalein, a flavonoid monomer compound isolated from the dried root of the traditional Chinese herb Scutellaria baicalensis, has several pharmacological activities, such as anti‑inflammatory, anti‑angiogenic, antitumor, antimicrobial and antiviral properties. Acute lung injury (ALI) is characterized by injury of the alveolar epithelium and capillary endothelium, which results in decreased lung volume, decreased lung compliance, ventilation/perfusion mismatch, intrapulmonary edema, alveolar edema and even acute hypoxemic respiratory failure. The present study aimed to investigate the effects of baicalein on lung injury and inflammation. Bioinformatics analysis using network pharmacology predicted that the hypoxia inducible factor‑1α (HIF‑1α) and glycolysis signaling pathways were involved in the mechanism underlying the therapeutic effects of baicalein. Further in vitro and in vivo experiments, such as immunohistochemistry, immunofluorescence and PCR, verified that baicalein could inhibit HIF‑1α signaling, thus suppressing glycolysis, and improving inflammatory responses and ALI. Taken together, the results of the present study suggested that the anti‑inflammatory effects of baicalein on treating ALI were associated with its ability to suppress glycolysis via the HIF‑1α signaling pathway.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
黄芩素通过 HIF-1α 信号传导抑制糖酵解,从而抑制炎症并减轻急性肺损伤。
黄芩素是从传统中草药黄芩的干燥根中分离出来的一种黄酮类单体化合物,具有多种药理活性,如抗炎、抗血管生成、抗肿瘤、抗菌和抗病毒等特性。急性肺损伤(ALI)的特点是肺泡上皮和毛细血管内皮损伤,导致肺容量减少、肺顺应性降低、通气/灌注不匹配、肺内水肿、肺泡水肿,甚至急性低氧血症呼吸衰竭。本研究旨在探讨黄芩苷对肺损伤和炎症的影响。利用网络药理学进行的生物信息学分析预测,低氧诱导因子-1α(HIF-1α)和糖酵解信号通路参与了黄芩苷的治疗作用机制。进一步的体外和体内实验,如免疫组化、免疫荧光和 PCR,验证了黄芩苷能抑制 HIF-1α 信号传导,从而抑制糖酵解,改善炎症反应和 ALI。综上所述,本研究结果表明,黄芩苷治疗 ALI 的抗炎作用与其通过 HIF-1α 信号通路抑制糖酵解的能力有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular medicine reports
Molecular medicine reports 医学-病理学
CiteScore
7.60
自引率
0.00%
发文量
321
审稿时长
1.5 months
期刊介绍: Molecular Medicine Reports is a monthly, peer-reviewed journal available in print and online, that includes studies devoted to molecular medicine, underscoring aspects including pharmacology, pathology, genetics, neurosciences, infectious diseases, molecular cardiology and molecular surgery. In vitro and in vivo studies of experimental model systems pertaining to the mechanisms of a variety of diseases offer researchers the necessary tools and knowledge with which to aid the diagnosis and treatment of human diseases.
期刊最新文献
Solamargine inhibits gastric cancer progression via inactivation of STAT3/PD‑L1 signaling. [Retracted] lncRNA DQ786243 promotes hepatocellular carcinoma cell invasion and proliferation by regulating the miR‑15b‑5p/Wnt3A axis. Ophiopogon japonicus polysaccharide reduces doxorubicin-induced myocardial ferroptosis injury by activating Nrf2/GPX4 signaling and alleviating iron accumulation. Ciliary neurotrophic factor activation of astrocytes mediates neuronal damage via the IL‑6/IL‑6R pathway. MDM2 interacts with PTEN to inhibit endothelial cell development and promote deep vein thrombosis via the JAK/STAT signaling pathway.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1