Predicting the characteristics of a C2B6 monolayer with ultrahigh carrier mobility.

IF 3.8 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Frontiers in Chemistry Pub Date : 2024-10-24 eCollection Date: 2024-01-01 DOI:10.3389/fchem.2024.1482006
Ping Xu, Zhengyang Zhu, Ruxin Zheng, Qingyun Sun, Zhen Ma, Weihua Mu, Zhen Cui
{"title":"Predicting the characteristics of a C<sub>2</sub>B<sub>6</sub> monolayer with ultrahigh carrier mobility.","authors":"Ping Xu, Zhengyang Zhu, Ruxin Zheng, Qingyun Sun, Zhen Ma, Weihua Mu, Zhen Cui","doi":"10.3389/fchem.2024.1482006","DOIUrl":null,"url":null,"abstract":"<p><p>Two-dimensional materials have excellent electronic and optical properties, suggesting absolute advantages in nanodevices. In this work, a new two-dimensional material with a puckered structure, a C<sub>2</sub>B<sub>6</sub> monolayer, is proposed. The material presents dynamic and thermal stability calculated by first-principle simulations. Interestingly, the C<sub>2</sub>B<sub>6</sub> monolayer possesses semiconductor behavior with an ultra-narrow bandgap of approximately 0.671 eV by HSE06 functional. Meanwhile, the hole in the C<sub>2</sub>B<sub>6</sub> monolayer shows ultrahigh mobility at approximately 6,342 cm<sup>2</sup>⋅V<sup>-1</sup>⋅s<sup>-1</sup> in decent transport directions, which is larger than traditional transition metal dichalcogenides materials. More importantly, the pronounced anisotropy of mobility of the electrons and holes can separate the photogenerated charges, suggesting the applications for photocatalytic, photovoltaic and optical and cold chain electronic devices. Then, the novel properties of the light absorption characteristic are obtained, and the anisotropic photocurrent implies the C<sub>2</sub>B<sub>6</sub> monolayer can be used as a potential photoelectric device. Our results provide theoretical guidance for the design and application of two-dimensional materials.</p>","PeriodicalId":12421,"journal":{"name":"Frontiers in Chemistry","volume":"12 ","pages":"1482006"},"PeriodicalIF":3.8000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11540763/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3389/fchem.2024.1482006","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Two-dimensional materials have excellent electronic and optical properties, suggesting absolute advantages in nanodevices. In this work, a new two-dimensional material with a puckered structure, a C2B6 monolayer, is proposed. The material presents dynamic and thermal stability calculated by first-principle simulations. Interestingly, the C2B6 monolayer possesses semiconductor behavior with an ultra-narrow bandgap of approximately 0.671 eV by HSE06 functional. Meanwhile, the hole in the C2B6 monolayer shows ultrahigh mobility at approximately 6,342 cm2⋅V-1⋅s-1 in decent transport directions, which is larger than traditional transition metal dichalcogenides materials. More importantly, the pronounced anisotropy of mobility of the electrons and holes can separate the photogenerated charges, suggesting the applications for photocatalytic, photovoltaic and optical and cold chain electronic devices. Then, the novel properties of the light absorption characteristic are obtained, and the anisotropic photocurrent implies the C2B6 monolayer can be used as a potential photoelectric device. Our results provide theoretical guidance for the design and application of two-dimensional materials.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
预测具有超高载流子迁移率的 C2B6 单层的特性。
二维材料具有优异的电子和光学特性,在纳米器件中具有绝对优势。本研究提出了一种具有皱褶结构的新型二维材料,即 C2B6 单层材料。通过第一原理模拟计算,该材料具有动态和热稳定性。有趣的是,通过 HSE06 函数计算,C2B6 单层具有约 0.671 eV 的超窄带隙,具有半导体特性。同时,C2B6 单层中的空穴在正向传输方向上显示出约 6,342 cm2⋅V-1⋅s-1 的超高迁移率,这一迁移率大于传统的过渡金属二卤化物材料。更重要的是,电子和空穴迁移率的明显各向异性可以分离光生电荷,这为光催化、光伏、光学和冷链电子器件的应用提供了可能。随后,我们获得了光吸收特性的新特性,各向异性的光电流意味着 C2B6 单层可用作潜在的光电器件。我们的研究结果为二维材料的设计和应用提供了理论指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Frontiers in Chemistry
Frontiers in Chemistry Chemistry-General Chemistry
CiteScore
8.50
自引率
3.60%
发文量
1540
审稿时长
12 weeks
期刊介绍: Frontiers in Chemistry is a high visiblity and quality journal, publishing rigorously peer-reviewed research across the chemical sciences. Field Chief Editor Steve Suib at the University of Connecticut is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to academics, industry leaders and the public worldwide. Chemistry is a branch of science that is linked to all other main fields of research. The omnipresence of Chemistry is apparent in our everyday lives from the electronic devices that we all use to communicate, to foods we eat, to our health and well-being, to the different forms of energy that we use. While there are many subtopics and specialties of Chemistry, the fundamental link in all these areas is how atoms, ions, and molecules come together and come apart in what some have come to call the “dance of life”. All specialty sections of Frontiers in Chemistry are open-access with the goal of publishing outstanding research publications, review articles, commentaries, and ideas about various aspects of Chemistry. The past forms of publication often have specific subdisciplines, most commonly of analytical, inorganic, organic and physical chemistries, but these days those lines and boxes are quite blurry and the silos of those disciplines appear to be eroding. Chemistry is important to both fundamental and applied areas of research and manufacturing, and indeed the outlines of academic versus industrial research are also often artificial. Collaborative research across all specialty areas of Chemistry is highly encouraged and supported as we move forward. These are exciting times and the field of Chemistry is an important and significant contributor to our collective knowledge.
期刊最新文献
Construction of middle-phase microemulsion system and its micro-mechanism on displacing residual oil in low-permeability porous media. Digital identification and adulteration analysis of Codonopsis Radix and Stellariae Radix based on the "digital identity" of chemical compositions. Corrigendum: A self-reference interference sensor based on coherence multiplexing. DFT-guided synthesis of N, B dual-doped porous carbon from saccharina japonica for enhanced oxygen reduction catalysis. Experimental and advanced equilibrium studies on the enhanced adsorption of phosphate, cadmium, and safranin dye pollutants using methoxy exfoliated glauconite.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1