Luis Paulo B Sousa Junior, Luis Fernando B Pinto, Valdecy A R Cruz, Gerson A Oliveira Junior, Hinayah R Oliveira, Tatiane S Chud, Victor B Pedrosa, Filippo Miglior, Flávio S Schenkel, Luiz F Brito
{"title":"Genome-wide association and functional genomic analyses for body conformation traits in North American Holstein cattle.","authors":"Luis Paulo B Sousa Junior, Luis Fernando B Pinto, Valdecy A R Cruz, Gerson A Oliveira Junior, Hinayah R Oliveira, Tatiane S Chud, Victor B Pedrosa, Filippo Miglior, Flávio S Schenkel, Luiz F Brito","doi":"10.3389/fgene.2024.1478788","DOIUrl":null,"url":null,"abstract":"<p><p>Body conformation traits are directly associated with longevity, fertility, health, and workability in dairy cows and have been under direct genetic selection for many decades in various countries worldwide. The main objectives of this study were to perform genome-wide association studies and functional enrichment analyses for fourteen body conformation traits using imputed high-density single nucleotide polymorphism (SNP) genotypes. The traits analyzed include body condition score (BCS), body depth (BD), bone quality (BQ), chest width (CW), dairy capacity (DC), foot angle (FAN), front legs view (FLV), heel depth (HDe), height at front end (HFE), locomotion (LOC), rear legs rear view (RLRV), rear legs side view (RLSV), stature (ST), and a composite feet and legs score index (FL) of Holstein cows scored in Canada. De-regressed estimated breeding values from a dataset of 39,135 North American Holstein animals were used as pseudo-phenotypes in the genome-wide association analyses. A mixed linear model was used to estimate the SNP effects, which ranged from 239,533 to 242,747 markers depending on the trait analyzed. Genes and quantitative trait loci (QTL) located up to 100 Kb upstream or downstream of the significant SNPs previously cited in the Animal QTLdb were detected, and functional enrichment analyses were performed for the candidate genes identified for each trait. A total of 20, 60, 13, 17, 27, 8, 7, 19, 4, 10, 13, 15, 7, and 13 genome-wide statistically significant SNPs for Bonferroni correction based on independent chromosomal segments were identified for BCS, BD, BQ, CW, DC, FAN, FLV, HDe, HFE, LOC, RLRV, RLSV, ST, and FL, respectively. The significant SNPs were located across the whole genome, except on chromosomes BTA24, BTA27, and BTA29. Four markers (for BCS, BD, HDe, and RLRV) were statistically significant when considering a much stricter threshold for the Bonferroni correction for multiple tests. Moreover, the genomic regions identified overlap with various QTL previously reported for the trait groups of exterior, health, meat and carcass, milk, production, and reproduction. The functional enrichment analyses revealed 27 significant gene ontology terms. These enriched genomic regions harbor various candidate genes previously reported as linked to bone development, metabolism, as well as infectious and immunological diseases.</p>","PeriodicalId":12750,"journal":{"name":"Frontiers in Genetics","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11540798/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fgene.2024.1478788","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Body conformation traits are directly associated with longevity, fertility, health, and workability in dairy cows and have been under direct genetic selection for many decades in various countries worldwide. The main objectives of this study were to perform genome-wide association studies and functional enrichment analyses for fourteen body conformation traits using imputed high-density single nucleotide polymorphism (SNP) genotypes. The traits analyzed include body condition score (BCS), body depth (BD), bone quality (BQ), chest width (CW), dairy capacity (DC), foot angle (FAN), front legs view (FLV), heel depth (HDe), height at front end (HFE), locomotion (LOC), rear legs rear view (RLRV), rear legs side view (RLSV), stature (ST), and a composite feet and legs score index (FL) of Holstein cows scored in Canada. De-regressed estimated breeding values from a dataset of 39,135 North American Holstein animals were used as pseudo-phenotypes in the genome-wide association analyses. A mixed linear model was used to estimate the SNP effects, which ranged from 239,533 to 242,747 markers depending on the trait analyzed. Genes and quantitative trait loci (QTL) located up to 100 Kb upstream or downstream of the significant SNPs previously cited in the Animal QTLdb were detected, and functional enrichment analyses were performed for the candidate genes identified for each trait. A total of 20, 60, 13, 17, 27, 8, 7, 19, 4, 10, 13, 15, 7, and 13 genome-wide statistically significant SNPs for Bonferroni correction based on independent chromosomal segments were identified for BCS, BD, BQ, CW, DC, FAN, FLV, HDe, HFE, LOC, RLRV, RLSV, ST, and FL, respectively. The significant SNPs were located across the whole genome, except on chromosomes BTA24, BTA27, and BTA29. Four markers (for BCS, BD, HDe, and RLRV) were statistically significant when considering a much stricter threshold for the Bonferroni correction for multiple tests. Moreover, the genomic regions identified overlap with various QTL previously reported for the trait groups of exterior, health, meat and carcass, milk, production, and reproduction. The functional enrichment analyses revealed 27 significant gene ontology terms. These enriched genomic regions harbor various candidate genes previously reported as linked to bone development, metabolism, as well as infectious and immunological diseases.
Frontiers in GeneticsBiochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
5.50
自引率
8.10%
发文量
3491
审稿时长
14 weeks
期刊介绍:
Frontiers in Genetics publishes rigorously peer-reviewed research on genes and genomes relating to all the domains of life, from humans to plants to livestock and other model organisms. Led by an outstanding Editorial Board of the world’s leading experts, this multidisciplinary, open-access journal is at the forefront of communicating cutting-edge research to researchers, academics, clinicians, policy makers and the public.
The study of inheritance and the impact of the genome on various biological processes is well documented. However, the majority of discoveries are still to come. A new era is seeing major developments in the function and variability of the genome, the use of genetic and genomic tools and the analysis of the genetic basis of various biological phenomena.