{"title":"Validation of selective catalytic BmCBP inhibitors that regulate the Bm30K-24 protein expression in silkworm, Bombyx mori.","authors":"Jiasheng Geng, Weina Lu, Qinglong Kong, Jiao Lv, Yue Liu, Guowei Zu, Yanmei Chen, Caiying Jiang, Zhengying You, Zuoming Nie","doi":"10.1111/imb.12974","DOIUrl":null,"url":null,"abstract":"<p><p>The cAMP response element binding protein (CREB)-binding protein (CBP) is a histone acetyltransferase that plays an indispensable role in regulating the acetylation of histone and non-histone proteins. Recently, it has been discovered that chemical inhibitors A485 and C646 can bind to Bombyx mori's CBP (BmCBP) and inhibit its acetyltransferase activity. Notably, the binding ability of A485 with BmCBP showed a very low Kd value of 48 nM by surface plasmon resonance (SPR) test. Further identification showed that both A485 and C646 can decrease the acetylation level of known substrate H3K27 and only 1 μM of A485 can almost completely inhibit the acetylation of H3K27, suggesting that A485 is an effective inhibitor of BmCBP's acetyltransferase activity. Moreover, it was confirmed that A485 could downregulate the expression of acetylated Bm30K-24 protein at a post-translational level through acetylation modification by BmCBP. Additionally, it was found that A485 can downregulate the stability of Bm30K-24 and improve its ubiquitination level, suggesting that the acetylation modification by BmCBP could compete with ubiquitination modification at the same lysine site on Bm30K-24, thereby affecting its protein stability. Here, we predict that A485 may be a potent CBP acetyltransferase inhibitor which could be utilized to inhibit acetyltransferase activity in insects, including silkworms.</p>","PeriodicalId":13526,"journal":{"name":"Insect Molecular Biology","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insect Molecular Biology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/imb.12974","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The cAMP response element binding protein (CREB)-binding protein (CBP) is a histone acetyltransferase that plays an indispensable role in regulating the acetylation of histone and non-histone proteins. Recently, it has been discovered that chemical inhibitors A485 and C646 can bind to Bombyx mori's CBP (BmCBP) and inhibit its acetyltransferase activity. Notably, the binding ability of A485 with BmCBP showed a very low Kd value of 48 nM by surface plasmon resonance (SPR) test. Further identification showed that both A485 and C646 can decrease the acetylation level of known substrate H3K27 and only 1 μM of A485 can almost completely inhibit the acetylation of H3K27, suggesting that A485 is an effective inhibitor of BmCBP's acetyltransferase activity. Moreover, it was confirmed that A485 could downregulate the expression of acetylated Bm30K-24 protein at a post-translational level through acetylation modification by BmCBP. Additionally, it was found that A485 can downregulate the stability of Bm30K-24 and improve its ubiquitination level, suggesting that the acetylation modification by BmCBP could compete with ubiquitination modification at the same lysine site on Bm30K-24, thereby affecting its protein stability. Here, we predict that A485 may be a potent CBP acetyltransferase inhibitor which could be utilized to inhibit acetyltransferase activity in insects, including silkworms.
期刊介绍:
Insect Molecular Biology has been dedicated to providing researchers with the opportunity to publish high quality original research on topics broadly related to insect molecular biology since 1992. IMB is particularly interested in publishing research in insect genomics/genes and proteomics/proteins.
This includes research related to:
• insect gene structure
• control of gene expression
• localisation and function/activity of proteins
• interactions of proteins and ligands/substrates
• effect of mutations on gene/protein function
• evolution of insect genes/genomes, especially where principles relevant to insects in general are established
• molecular population genetics where data are used to identify genes (or regions of genomes) involved in specific adaptations
• gene mapping using molecular tools
• molecular interactions of insects with microorganisms including Wolbachia, symbionts and viruses or other pathogens transmitted by insects
Papers can include large data sets e.g.from micro-array or proteomic experiments or analyses of genome sequences done in silico (subject to the data being placed in the context of hypothesis testing).