Author Correction: Prevalence and risk factors for lung involvement on low-dose chest CT (LDCT) in a paucisymptomatic population of 247 patients affected by COVID-19.

IF 4.1 2区 医学 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Insights into Imaging Pub Date : 2024-11-08 DOI:10.1186/s13244-024-01847-w
Maxime Castelli, Arnaud Maurin, Axel Bartoli, Michael Dassa, Baptiste Marchi, Julie Finance, Jean-Christophe Lagier, Matthieu Million, Philippe Parola, Philippe Brouqui, Didier Raoult, Sebastien Cortaredona, Alexis Jacquier, Jean-Yves Gaubert, Paul Habert
{"title":"Author Correction: Prevalence and risk factors for lung involvement on low-dose chest CT (LDCT) in a paucisymptomatic population of 247 patients affected by COVID-19.","authors":"Maxime Castelli, Arnaud Maurin, Axel Bartoli, Michael Dassa, Baptiste Marchi, Julie Finance, Jean-Christophe Lagier, Matthieu Million, Philippe Parola, Philippe Brouqui, Didier Raoult, Sebastien Cortaredona, Alexis Jacquier, Jean-Yves Gaubert, Paul Habert","doi":"10.1186/s13244-024-01847-w","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":13639,"journal":{"name":"Insights into Imaging","volume":"15 1","pages":"266"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11549255/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insights into Imaging","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1186/s13244-024-01847-w","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
作者更正:在 247 名受 COVID-19 影响的无症状人群中,低剂量胸部 CT (LDCT) 肺部受累的患病率和风险因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Insights into Imaging
Insights into Imaging Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
7.30
自引率
4.30%
发文量
182
审稿时长
13 weeks
期刊介绍: Insights into Imaging (I³) is a peer-reviewed open access journal published under the brand SpringerOpen. All content published in the journal is freely available online to anyone, anywhere! I³ continuously updates scientific knowledge and progress in best-practice standards in radiology through the publication of original articles and state-of-the-art reviews and opinions, along with recommendations and statements from the leading radiological societies in Europe. Founded by the European Society of Radiology (ESR), I³ creates a platform for educational material, guidelines and recommendations, and a forum for topics of controversy. A balanced combination of review articles, original papers, short communications from European radiological congresses and information on society matters makes I³ an indispensable source for current information in this field. I³ is owned by the ESR, however authors retain copyright to their article according to the Creative Commons Attribution License (see Copyright and License Agreement). All articles can be read, redistributed and reused for free, as long as the author of the original work is cited properly. The open access fees (article-processing charges) for this journal are kindly sponsored by ESR for all Members. The journal went open access in 2012, which means that all articles published since then are freely available online.
期刊最新文献
Impact of hepatic steatosis on liver stiffness measurement by vibration-controlled transient elastography and its diagnostic performance for identifying liver fibrosis in patients with chronic hepatitis B. Intratumoral and peritumoral MRI-based radiomics for predicting extrapelvic peritoneal metastasis in epithelial ovarian cancer. Percutaneous cryoablation of abdominal wall endometriosis: a systematic literature review of safety and efficacy. Utilizing a domain-specific large language model for LI-RADS v2018 categorization of free-text MRI reports: a feasibility study. Development and external evaluation of a self-learning auto-segmentation model for Colorectal Cancer Liver Metastases Assessment (COALA).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1