Proton pump inhibitor attenutes acidic microenvironment to improve the therapeutic effects of MSLN-CAR-T cells on the brain metastasis of solid tumors.

IF 12.1 1区 医学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Molecular Therapy Pub Date : 2024-11-06 DOI:10.1016/j.ymthe.2024.11.010
Xuejia Zhai, Ling Mao, Qingmei Kang, Jie Liu, Yu Zhou, Jun Wang, Xianyan Yang, Di Wang, Junhan Wang, Yao Li, Jiangjie Duan, Tao Zhang, Shuang Lin, Tingting Zhao, Jianjun Li, Min Wu, Shicang Yu
{"title":"Proton pump inhibitor attenutes acidic microenvironment to improve the therapeutic effects of MSLN-CAR-T cells on the brain metastasis of solid tumors.","authors":"Xuejia Zhai, Ling Mao, Qingmei Kang, Jie Liu, Yu Zhou, Jun Wang, Xianyan Yang, Di Wang, Junhan Wang, Yao Li, Jiangjie Duan, Tao Zhang, Shuang Lin, Tingting Zhao, Jianjun Li, Min Wu, Shicang Yu","doi":"10.1016/j.ymthe.2024.11.010","DOIUrl":null,"url":null,"abstract":"<p><p>The incidence of brain metastasis (BM) is gradually increasing, and the prognosis and therapeutic effect are poor. The emergence of immunotherapy has brought hope for the development of BM treatments. This study revealed that compared with primary cancers (PCs), BMs have a \"colder\" and more acidic tumor microenvironment (TME), resulting in reduced protein levels of mesothelin (MSLN), a promising target for chimeric antigen receptor-T (CAR-T) cell therapy for triple-negative breast cancer (TNBC) with BMs. These factors could significantly decrease the efficiency of MSLN-CAR-T cells in TNBC BMs. Pantoprazole (PPZ) administration at the most commonly used dose in the clinic notably increased the pondus hydrogenii (pH) of the TME, inhibited lysosomal activity, increased the membrane levels of the MSLN protein and improved the killing ability of MSLN-CAR-T cells both in vitro and in vivo. Similar results were obtained in non-small cell lung cancer (NSCLC) BMs. Hence, when administered in combination with CAR-T cells, PPZ, which increases the protein levels of target antigens, may constitute a new immunotherapeutic strategy for treating solid tumors with BMs.</p>","PeriodicalId":19020,"journal":{"name":"Molecular Therapy","volume":" ","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ymthe.2024.11.010","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The incidence of brain metastasis (BM) is gradually increasing, and the prognosis and therapeutic effect are poor. The emergence of immunotherapy has brought hope for the development of BM treatments. This study revealed that compared with primary cancers (PCs), BMs have a "colder" and more acidic tumor microenvironment (TME), resulting in reduced protein levels of mesothelin (MSLN), a promising target for chimeric antigen receptor-T (CAR-T) cell therapy for triple-negative breast cancer (TNBC) with BMs. These factors could significantly decrease the efficiency of MSLN-CAR-T cells in TNBC BMs. Pantoprazole (PPZ) administration at the most commonly used dose in the clinic notably increased the pondus hydrogenii (pH) of the TME, inhibited lysosomal activity, increased the membrane levels of the MSLN protein and improved the killing ability of MSLN-CAR-T cells both in vitro and in vivo. Similar results were obtained in non-small cell lung cancer (NSCLC) BMs. Hence, when administered in combination with CAR-T cells, PPZ, which increases the protein levels of target antigens, may constitute a new immunotherapeutic strategy for treating solid tumors with BMs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
质子泵抑制剂可改善酸性微环境,从而提高 MSLN-CAR-T 细胞对实体瘤脑转移的治疗效果。
脑转移(BM)的发病率逐渐升高,预后和治疗效果都很差。免疫疗法的出现为脑转移瘤治疗的发展带来了希望。这项研究发现,与原发性癌症(PC)相比,脑转移瘤的肿瘤微环境(TME)更 "冷"、更酸性,导致间皮素(MSLN)蛋白水平降低,而间皮素是嵌合抗原受体-T(CAR-T)细胞治疗三阴性乳腺癌(TNBC)脑转移瘤的一个有希望的靶点。这些因素可能会大大降低MSLN-CAR-T细胞在TNBC母细胞中的效率。以临床上最常用的剂量服用泮托拉唑(PPZ)可显著提高TME的pH值,抑制溶酶体活性,增加MSLN蛋白的膜水平,并提高MSLN-CAR-T细胞在体外和体内的杀伤能力。在非小细胞肺癌(NSCLC)骨髓细胞中也得到了类似的结果。因此,当PPZ与CAR-T细胞联合给药时,它能提高靶抗原的蛋白水平,可能会成为治疗有BM的实体瘤的一种新的免疫治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Therapy
Molecular Therapy 医学-生物工程与应用微生物
CiteScore
19.20
自引率
3.20%
发文量
357
审稿时长
3 months
期刊介绍: Molecular Therapy is the leading journal for research in gene transfer, vector development, stem cell manipulation, and therapeutic interventions. It covers a broad spectrum of topics including genetic and acquired disease correction, vaccine development, pre-clinical validation, safety/efficacy studies, and clinical trials. With a focus on advancing genetics, medicine, and biotechnology, Molecular Therapy publishes peer-reviewed research, reviews, and commentaries to showcase the latest advancements in the field. With an impressive impact factor of 12.4 in 2022, it continues to attract top-tier contributions.
期刊最新文献
ARI0003: Co-transduced CD19/BCMA Dual-targeting CAR-T Cells for the Treatment of Non-Hodgkin Lymphoma. CRISPR targeting of mmu-miR-21a through a single adeno-associated virus vector prolongs survival of glioblastoma-bearing mice. Dorsal root ganglion toxicity after AAV intra-CSF delivery of a RNAi expression construct into nonhuman primates and mice. Lipid Nanoparticle Delivery of TALEN mRNA Targeting LPA Causes Gene Disruption and Plasma Lipoprotein(a) Reduction in Transgenic Mice. Longitudinal imaging of therapeutic enzyme expression after gene therapy for Fabry disease using Positron Emission Tomography and the radiotracer [18F]AGAL.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1