Yuji Oe, Young Chul Kim, Sadhana Kanoo, Helen A Goodluck, Natalia Lopez, Jolene Diedrich, Antonio Michel Pinto, K Garrett Evensen, Antonio Jose Martins Currais, Pamela Maher, Volker Vallon
{"title":"Western diet exacerbates a murine model of Balkan nephropathy.","authors":"Yuji Oe, Young Chul Kim, Sadhana Kanoo, Helen A Goodluck, Natalia Lopez, Jolene Diedrich, Antonio Michel Pinto, K Garrett Evensen, Antonio Jose Martins Currais, Pamela Maher, Volker Vallon","doi":"10.1152/ajprenal.00185.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Aristolochic acid (AA) ingestion causes Balkan nephropathy, characterized by tubular injury and progression to chronic kidney disease (CKD). AA is taken up by proximal tubule cells via organic anion transport and induces p21-mediated DNA damage response, but little is known about dietary modulating factors. Western diet (WD) is rich in saturated fats and sugars and can promote metabolic disorders and CKD progression. Here, we determined the impact of WD on AA-induced kidney injury. Five-week-old male C57BL/6J mice were fed WD or normal chow (NC) for 8 wk, followed by administration of AA every 3 days for 3 wk. Measurements were performed after the last injection and following a 3-wk recovery. Independent of dosing AA by body weight (3 mg/kg/day) or same dose/mouse (0.1125 mg/day), the AA-induced increase in plasma creatinine and reduction of hematocrit were greater in WD versus NC. This was associated with increased kidney gene expression in WD vs. NC of markers of DNA damage (p21), injury (Kim1 and Ngal), and inflammation (Tnfa) and kidney fibrosis staining. WD alone increased fractional excretion of indoxyl sulfate by 7.5-fold, indicating enhanced kidney organic anion transport. Kidney proteomics identified further WD-induced changes that could increase kidney sensitivity to AA and contribute to the altered response to AA including weakening of energy metabolism, potentiation of immune and infection pathways, and disruption in RNA regulation. In conclusion, WD can increase the susceptibility of mice to Balkan nephropathy, possibly in part through facilitating kidney uptake of the organic anion AA.<b>NEW & NOTEWORTHY</b> This study shows that a Western diet (WD) aggravates a murine model of Balkan nephropathy induced by the application of the organic anion and nephrotoxin aristolochic acid (AA). Mechanistically, this may involve WD-induced kidney organic anion secretion, which can facilitate the AA uptake into proximal tubular cells and thereby contribute to the injury. Kidney proteomics identified further changes induced by feeding a WD that could have increased the sensitivity of the kidney to stress and injury.</p>","PeriodicalId":93867,"journal":{"name":"American journal of physiology. Renal physiology","volume":" ","pages":"F15-F28"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Renal physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1152/ajprenal.00185.2024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/7 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Aristolochic acid (AA) ingestion causes Balkan nephropathy, characterized by tubular injury and progression to chronic kidney disease (CKD). AA is taken up by proximal tubule cells via organic anion transport and induces p21-mediated DNA damage response, but little is known about dietary modulating factors. Western diet (WD) is rich in saturated fats and sugars and can promote metabolic disorders and CKD progression. Here, we determined the impact of WD on AA-induced kidney injury. Five-week-old male C57BL/6J mice were fed WD or normal chow (NC) for 8 wk, followed by administration of AA every 3 days for 3 wk. Measurements were performed after the last injection and following a 3-wk recovery. Independent of dosing AA by body weight (3 mg/kg/day) or same dose/mouse (0.1125 mg/day), the AA-induced increase in plasma creatinine and reduction of hematocrit were greater in WD versus NC. This was associated with increased kidney gene expression in WD vs. NC of markers of DNA damage (p21), injury (Kim1 and Ngal), and inflammation (Tnfa) and kidney fibrosis staining. WD alone increased fractional excretion of indoxyl sulfate by 7.5-fold, indicating enhanced kidney organic anion transport. Kidney proteomics identified further WD-induced changes that could increase kidney sensitivity to AA and contribute to the altered response to AA including weakening of energy metabolism, potentiation of immune and infection pathways, and disruption in RNA regulation. In conclusion, WD can increase the susceptibility of mice to Balkan nephropathy, possibly in part through facilitating kidney uptake of the organic anion AA.NEW & NOTEWORTHY This study shows that a Western diet (WD) aggravates a murine model of Balkan nephropathy induced by the application of the organic anion and nephrotoxin aristolochic acid (AA). Mechanistically, this may involve WD-induced kidney organic anion secretion, which can facilitate the AA uptake into proximal tubular cells and thereby contribute to the injury. Kidney proteomics identified further changes induced by feeding a WD that could have increased the sensitivity of the kidney to stress and injury.