Hong Zhao, Chenzhong Wang, Bo Liu, Ziyu Weng, Yi Shi, Chi Zhang
{"title":"RIP1 inhibition reduces chondrocyte apoptosis through downregulating nuclear factor-kappa B signaling in a mouse osteoarthritis model.","authors":"Hong Zhao, Chenzhong Wang, Bo Liu, Ziyu Weng, Yi Shi, Chi Zhang","doi":"10.1007/s11033-024-10080-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Excessive chondrocyte death is a critical player in the process of osteoarthritis (OA). The present study was aimed to study the role of receptor-interacting serine/threonine kinase (RIP) 1-mediated signaling for programmed cell death in OA.</p><p><strong>Methods: </strong>In the present study, RIP1 protein expression was evaluated in mouse OA cartilage and cultured primary murine chondrocytes exposed to tumor necrosis factor-alpha (TNF-α). Protein expression involved in necroptosis and apoptosis and chondrocyte-derived extracellular matrix were examined. Inhibition of RIP1 was conducted using the RNAi technique and pharmacological inhibition. Western blot, immunohistochemistry, and immunofluorescence examination were applied.</p><p><strong>Results: </strong>The protein presence of RIP1, but not RIP3, was increased in the mouse OA tissue and cultured chondrocytes exposed to TNF-α. Knockdown of RIP1 increased protein expression of collagen II and sex-determining region Y-box transcription factor 9, and reduced protein expression of matrix metallopeptidases 13 and a disintegrin and metalloproteinase with thrombospondin motifs 5. Inhibition of RIP1 reduced the phosphorylated NF-κB signals, decreased cell apoptosis, and restored extracellular matrix expression in cultured chondrocytes. Both RNAi and pharmacological inhibition of RIP1 decelerated the progress of OA in mice.</p><p><strong>Conclusion: </strong>RIP1 regulates chondrocyte apoptosis through NF-κB signaling. Inhibition of RIP1 provides a novel therapeutic approach for OA therapy.</p>","PeriodicalId":18755,"journal":{"name":"Molecular Biology Reports","volume":"51 1","pages":"1132"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biology Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11033-024-10080-z","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Excessive chondrocyte death is a critical player in the process of osteoarthritis (OA). The present study was aimed to study the role of receptor-interacting serine/threonine kinase (RIP) 1-mediated signaling for programmed cell death in OA.
Methods: In the present study, RIP1 protein expression was evaluated in mouse OA cartilage and cultured primary murine chondrocytes exposed to tumor necrosis factor-alpha (TNF-α). Protein expression involved in necroptosis and apoptosis and chondrocyte-derived extracellular matrix were examined. Inhibition of RIP1 was conducted using the RNAi technique and pharmacological inhibition. Western blot, immunohistochemistry, and immunofluorescence examination were applied.
Results: The protein presence of RIP1, but not RIP3, was increased in the mouse OA tissue and cultured chondrocytes exposed to TNF-α. Knockdown of RIP1 increased protein expression of collagen II and sex-determining region Y-box transcription factor 9, and reduced protein expression of matrix metallopeptidases 13 and a disintegrin and metalloproteinase with thrombospondin motifs 5. Inhibition of RIP1 reduced the phosphorylated NF-κB signals, decreased cell apoptosis, and restored extracellular matrix expression in cultured chondrocytes. Both RNAi and pharmacological inhibition of RIP1 decelerated the progress of OA in mice.
Conclusion: RIP1 regulates chondrocyte apoptosis through NF-κB signaling. Inhibition of RIP1 provides a novel therapeutic approach for OA therapy.
期刊介绍:
Molecular Biology Reports publishes original research papers and review articles that demonstrate novel molecular and cellular findings in both eukaryotes (animals, plants, algae, funghi) and prokaryotes (bacteria and archaea).The journal publishes results of both fundamental and translational research as well as new techniques that advance experimental progress in the field and presents original research papers, short communications and (mini-) reviews.