Qinfei Li, Jiaqin Yang, Xiaoyun Liu, Jiabing Wu, Ao Peng, Jun Si, Xuesong Ren, Jiaqin Mei, Wei Qian, Honghao Lv, Zujun Tang, Hongyuan Song
{"title":"Improving cabbage resistance to <i>Sclerotinia sclerotiorum</i> via crosses with <i>Brassica incana</i>.","authors":"Qinfei Li, Jiaqin Yang, Xiaoyun Liu, Jiabing Wu, Ao Peng, Jun Si, Xuesong Ren, Jiaqin Mei, Wei Qian, Honghao Lv, Zujun Tang, Hongyuan Song","doi":"10.1007/s11032-024-01513-5","DOIUrl":null,"url":null,"abstract":"<p><p>Cabbage is a widely cultivated leafy vegetable, but head rot disease caused by the fungus <i>Sclerotina sclerotiorum</i> can seriously reduce its yield and quality. There are currently not any cabbage varieties that are completely immune to the disease, but its wild relative <i>Brassica incana</i> is very resistant. In this study, cabbage resistance was improved by backcrossing a highly resistant <i>B. incana</i> accession (C01) with a susceptible cabbage cultivar (F416). Although C01 lacks a leafy head formation, highly resistant plants appeared in the fourth backcrossing generation (BC<sub>4</sub>F<sub>1</sub>) that had a similar leafy head to F416. The individuals with strong resistance were purified by self-pollination. Inbred lines that maintained a relatively stable resistance at BC<sub>4</sub>F<sub>3</sub> were developed and had significantly higher resistance to <i>S. sclerotiorum</i> than F416. In addition, hybrids created from a cross between of BC<sub>4</sub>F<sub>3</sub> and E2 had higher resistances to <i>S. sclerotiorum</i> and similar agronomic characteristics to Xiyuan 4. The results demonstrated that new F416 lines that are resistant to <i>S. sclerotiorum</i> can be developed, and that these lines could be used to create new cabbage varieties with superior head rot resistance.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s11032-024-01513-5.</p>","PeriodicalId":18769,"journal":{"name":"Molecular Breeding","volume":"44 11","pages":"76"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11538228/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Breeding","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11032-024-01513-5","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Cabbage is a widely cultivated leafy vegetable, but head rot disease caused by the fungus Sclerotina sclerotiorum can seriously reduce its yield and quality. There are currently not any cabbage varieties that are completely immune to the disease, but its wild relative Brassica incana is very resistant. In this study, cabbage resistance was improved by backcrossing a highly resistant B. incana accession (C01) with a susceptible cabbage cultivar (F416). Although C01 lacks a leafy head formation, highly resistant plants appeared in the fourth backcrossing generation (BC4F1) that had a similar leafy head to F416. The individuals with strong resistance were purified by self-pollination. Inbred lines that maintained a relatively stable resistance at BC4F3 were developed and had significantly higher resistance to S. sclerotiorum than F416. In addition, hybrids created from a cross between of BC4F3 and E2 had higher resistances to S. sclerotiorum and similar agronomic characteristics to Xiyuan 4. The results demonstrated that new F416 lines that are resistant to S. sclerotiorum can be developed, and that these lines could be used to create new cabbage varieties with superior head rot resistance.
Supplementary information: The online version contains supplementary material available at 10.1007/s11032-024-01513-5.
期刊介绍:
Molecular Breeding is an international journal publishing papers on applications of plant molecular biology, i.e., research most likely leading to practical applications. The practical applications might relate to the Developing as well as the industrialised World and have demonstrable benefits for the seed industry, farmers, processing industry, the environment and the consumer.
All papers published should contribute to the understanding and progress of modern plant breeding, encompassing the scientific disciplines of molecular biology, biochemistry, genetics, physiology, pathology, plant breeding, and ecology among others.
Molecular Breeding welcomes the following categories of papers: full papers, short communications, papers describing novel methods and review papers. All submission will be subject to peer review ensuring the highest possible scientific quality standards.
Molecular Breeding core areas:
Molecular Breeding will consider manuscripts describing contemporary methods of molecular genetics and genomic analysis, structural and functional genomics in crops, proteomics and metabolic profiling, abiotic stress and field evaluation of transgenic crops containing particular traits. Manuscripts on marker assisted breeding are also of major interest, in particular novel approaches and new results of marker assisted breeding, QTL cloning, integration of conventional and marker assisted breeding, and QTL studies in crop plants.