Stefano Tomassi, Benito Natale, Michele Roggia, Luisa Amato, Caterina De Rosa, Carminia Maria Della Corte, Emma Baglini, Giorgio Amendola, Anna Messere, Salvatore Di Maro, Elisabetta Barresi, Federico Da Settimo, Maria Letizia Trincavelli, Fortunato Ciardiello, Sabrina Taliani, Floriana Morgillo, Sandro Cosconati
{"title":"Discovery of <i>N</i>-substituted-2-oxoindolin benzoylhydrazines as c-MET/SMO modulators in EGFRi-resistant non-small cell lung cancer.","authors":"Stefano Tomassi, Benito Natale, Michele Roggia, Luisa Amato, Caterina De Rosa, Carminia Maria Della Corte, Emma Baglini, Giorgio Amendola, Anna Messere, Salvatore Di Maro, Elisabetta Barresi, Federico Da Settimo, Maria Letizia Trincavelli, Fortunato Ciardiello, Sabrina Taliani, Floriana Morgillo, Sandro Cosconati","doi":"10.1039/d4md00553h","DOIUrl":null,"url":null,"abstract":"<p><p>Non-small cell lung cancer (NSCLC), the leading cause of cancer-related mortality worldwide, poses a formidable challenge due to its heterogeneity and the emergence of resistance to targeted therapies. While initially effective, first- and third-generation EGFR-tyrosine kinase inhibitors (TKIs) often fail to control disease progression, leaving patients with limited treatment options. To address this unmet medical need, we explored the therapeutic potential of multitargeting agents that simultaneously inhibit two key signalling pathways, the mesenchymal-epithelial transition factor (c-MET) and the G protein-coupled receptor Smoothened (SMO), frequently dysregulated in NSCLC. By employing a combination of <i>in silico</i> drug repurposing and structure-based structure-activity relationship (SAR) studies, we identified and developed novel c-MET/SMO-targeting agents with antiproliferative activity against first- as well as third-generation EGFR-TKI-resistant NSCLC cells suggesting a synergistic effect arising from the simultaneous inhibition of c-MET and SMO.</p>","PeriodicalId":21462,"journal":{"name":"RSC medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11539002/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1039/d4md00553h","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Non-small cell lung cancer (NSCLC), the leading cause of cancer-related mortality worldwide, poses a formidable challenge due to its heterogeneity and the emergence of resistance to targeted therapies. While initially effective, first- and third-generation EGFR-tyrosine kinase inhibitors (TKIs) often fail to control disease progression, leaving patients with limited treatment options. To address this unmet medical need, we explored the therapeutic potential of multitargeting agents that simultaneously inhibit two key signalling pathways, the mesenchymal-epithelial transition factor (c-MET) and the G protein-coupled receptor Smoothened (SMO), frequently dysregulated in NSCLC. By employing a combination of in silico drug repurposing and structure-based structure-activity relationship (SAR) studies, we identified and developed novel c-MET/SMO-targeting agents with antiproliferative activity against first- as well as third-generation EGFR-TKI-resistant NSCLC cells suggesting a synergistic effect arising from the simultaneous inhibition of c-MET and SMO.