Laura P R Figueroa, Renato L de Carvalho, Renata G Almeida, Esther R S Paz, Emilay B T Diogo, Maria H Araujo, Warley S Borges, Victor F S Ramos, Rubem F S Menna-Barreto, James M Wood, John F Bower, Eufrânio N da Silva Júnior
{"title":"Generation and capture of naphthoquinonynes: a new frontier in the development of trypanocidal quinones <i>via</i> aryne chemistry.","authors":"Laura P R Figueroa, Renato L de Carvalho, Renata G Almeida, Esther R S Paz, Emilay B T Diogo, Maria H Araujo, Warley S Borges, Victor F S Ramos, Rubem F S Menna-Barreto, James M Wood, John F Bower, Eufrânio N da Silva Júnior","doi":"10.1039/d4md00558a","DOIUrl":null,"url":null,"abstract":"<p><p>The regioselective synthesis of functionalized naphthoquinones <i>via</i> the formation and capture of naphthoquinonynes has been used to prepare trypanocidal compounds. The target compounds are functionalized on the aromatic ring, leaving the quinoidal ring intact. Using this technique, eighteen functionalized naphthoquinones were succesfull obtained, divided in two main groups: the first scope using <i>N</i>-nucleophiles, and the second scope using pyridine <i>N</i>-oxides, with yields up to 74%. Evaluation against bloodstream trypomastigotes of <i>T. cruzi</i> has identified fourteen compounds that are more potent than benznidazole (Bz); for instance, compounds 29b-I and 30b, with IC<sub>50</sub>/24 h values of 10.5 and 10.1 μM, respectively, are approximately 10-fold more active than Bz. This study provides the first examples of the application of naphthoquinonyne chemistry for the synthesis of new compounds with potent trypanocidal activities.</p>","PeriodicalId":21462,"journal":{"name":"RSC medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11539365/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1039/d4md00558a","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The regioselective synthesis of functionalized naphthoquinones via the formation and capture of naphthoquinonynes has been used to prepare trypanocidal compounds. The target compounds are functionalized on the aromatic ring, leaving the quinoidal ring intact. Using this technique, eighteen functionalized naphthoquinones were succesfull obtained, divided in two main groups: the first scope using N-nucleophiles, and the second scope using pyridine N-oxides, with yields up to 74%. Evaluation against bloodstream trypomastigotes of T. cruzi has identified fourteen compounds that are more potent than benznidazole (Bz); for instance, compounds 29b-I and 30b, with IC50/24 h values of 10.5 and 10.1 μM, respectively, are approximately 10-fold more active than Bz. This study provides the first examples of the application of naphthoquinonyne chemistry for the synthesis of new compounds with potent trypanocidal activities.