Exploring protein natural diversity in environmental microbiomes with DeepMetagenome.

IF 4.3 Q1 BIOCHEMICAL RESEARCH METHODS Cell Reports Methods Pub Date : 2024-11-18 Epub Date: 2024-11-07 DOI:10.1016/j.crmeth.2024.100896
Xiaofang Li, Jun Zhang, Dan Ma, Xiaofei Fan, Xin Zheng, Yong-Xin Liu
{"title":"Exploring protein natural diversity in environmental microbiomes with DeepMetagenome.","authors":"Xiaofang Li, Jun Zhang, Dan Ma, Xiaofei Fan, Xin Zheng, Yong-Xin Liu","doi":"10.1016/j.crmeth.2024.100896","DOIUrl":null,"url":null,"abstract":"<p><p>Protein natural diversity offers a vast sequence space for protein engineering, and deep learning enables its detection from metagenomes/proteomes without prior assumptions. DeepMetagenome, a Python-based method, explores protein diversity through modules for training and analyzing sequence datasets. The deep learning model includes Embedding, Conv1D, LSTM, and Dense layers, with sequence feature analysis for data cleaning. Applied to metallothioneins from a database of over 146 million coding features, DeepMetagenome identified over 500 high-confidence metallothionein sequences, outperforming DIAMOND and CNN-based models. It showed stable performance compared to a Transformer-based model over 25 epochs. Among 23 synthesized sequences, 20 exhibited metal resistance. The tool also successfully explored the diversity of three additional protein families and is freely available on GitHub with detailed instructions.</p>","PeriodicalId":29773,"journal":{"name":"Cell Reports Methods","volume":" ","pages":"100896"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.crmeth.2024.100896","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Protein natural diversity offers a vast sequence space for protein engineering, and deep learning enables its detection from metagenomes/proteomes without prior assumptions. DeepMetagenome, a Python-based method, explores protein diversity through modules for training and analyzing sequence datasets. The deep learning model includes Embedding, Conv1D, LSTM, and Dense layers, with sequence feature analysis for data cleaning. Applied to metallothioneins from a database of over 146 million coding features, DeepMetagenome identified over 500 high-confidence metallothionein sequences, outperforming DIAMOND and CNN-based models. It showed stable performance compared to a Transformer-based model over 25 epochs. Among 23 synthesized sequences, 20 exhibited metal resistance. The tool also successfully explored the diversity of three additional protein families and is freely available on GitHub with detailed instructions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用 DeepMetagenome 探索环境微生物组中蛋白质的天然多样性。
蛋白质的自然多样性为蛋白质工程提供了广阔的序列空间,而深度学习可以在不预先假设的情况下从元基因组/蛋白质组中检测蛋白质的自然多样性。DeepMetagenome 是一种基于 Python 的方法,通过训练和分析序列数据集的模块来探索蛋白质的多样性。深度学习模型包括嵌入层、Conv1D 层、LSTM 层和密集层,并通过序列特征分析进行数据清理。DeepMetagenome 将超过 1.46 亿个编码特征的数据库应用于金属硫蛋白,识别出了 500 多个高置信度金属硫蛋白序列,表现优于基于 DIAMOND 和 CNN 的模型。与基于 Transformer 的模型相比,DeepMetagenome 在 25 个历时中表现出稳定的性能。在 23 个合成序列中,有 20 个表现出金属抗性。该工具还成功地探索了另外三个蛋白质家族的多样性,并在 GitHub 上免费提供,还附有详细说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cell Reports Methods
Cell Reports Methods Chemistry (General), Biochemistry, Genetics and Molecular Biology (General), Immunology and Microbiology (General)
CiteScore
3.80
自引率
0.00%
发文量
0
审稿时长
111 days
期刊最新文献
Generation of super-resolution images from barcode-based spatial transcriptomics by deep image prior. Accelerated protein retention expansion microscopy using microwave radiation. Intact protein barcoding enables one-shot identification of CRISPRi strains and their metabolic state. Patient-derived tumor organoid and fibroblast assembloid models for interrogation of the tumor microenvironment in esophageal adenocarcinoma. Enhancing immuno-oncology investigations through multidimensional decoding of tumor microenvironment with IOBR 2.0.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1