{"title":"HLA class II neoantigen presentation for CD4<sup>+</sup> T cell surveillance in HLA class II-negative colorectal cancer.","authors":"Satoru Matsumoto, Takahiro Tsujikawa, Serina Tokita, Mai Mohamed Bedeir, Kazuhiko Matsuo, Fumitake Hata, Yoshihiko Hirohashi, Takayuki Kanaseki, Toshihiko Torigoe","doi":"10.1080/2162402X.2024.2404665","DOIUrl":null,"url":null,"abstract":"<p><p>Neoantigen-reactive CD4<sup>+</sup> T cells play a key role in the anti-tumor immune response. However, the majority of epithelial tumors are negative for HLA class II (HLA-II) surface expression, and less is known about the processing of HLA-II antigens. Here, we directly identified naturally presented HLA-II neoantigens in HLA-II negative colorectal cancer (CRC) tissue using a proteogenomic approach. The neoantigens were immunogenic and induced patient CD4<sup>+</sup> T cells with a Th1-like memory phenotype that produced IFN-γ, IL2 and TNF-α. Multiplex immunohistochemistry (IHC) demonstrated an interaction between Th cells and HLA-II-positive antigen-presenting cells (APCs) at the invasive margin and within the tertiary lymphoid structures (TLS). In our CRC cohort, the density of stromal APCs was associated with HLA-II antigen presentation in the tumor microenvironment (TME), and the number of TLS was positively correlated with the number of somatic mutations in the tumors. These results demonstrate the presence of neoantigen-specific CD4<sup>+</sup> surveillance in HLA-II-negative CRC and suggest a potential role for macrophages and dendritic cells (DCs) at the invasive margin and in TLS for antigen presentation. Stromal APCs in the TME can potentially be used as a source for HLA-II neoantigen identification.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11542397/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/2162402X.2024.2404665","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/19 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Neoantigen-reactive CD4+ T cells play a key role in the anti-tumor immune response. However, the majority of epithelial tumors are negative for HLA class II (HLA-II) surface expression, and less is known about the processing of HLA-II antigens. Here, we directly identified naturally presented HLA-II neoantigens in HLA-II negative colorectal cancer (CRC) tissue using a proteogenomic approach. The neoantigens were immunogenic and induced patient CD4+ T cells with a Th1-like memory phenotype that produced IFN-γ, IL2 and TNF-α. Multiplex immunohistochemistry (IHC) demonstrated an interaction between Th cells and HLA-II-positive antigen-presenting cells (APCs) at the invasive margin and within the tertiary lymphoid structures (TLS). In our CRC cohort, the density of stromal APCs was associated with HLA-II antigen presentation in the tumor microenvironment (TME), and the number of TLS was positively correlated with the number of somatic mutations in the tumors. These results demonstrate the presence of neoantigen-specific CD4+ surveillance in HLA-II-negative CRC and suggest a potential role for macrophages and dendritic cells (DCs) at the invasive margin and in TLS for antigen presentation. Stromal APCs in the TME can potentially be used as a source for HLA-II neoantigen identification.
期刊介绍:
ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.