FEHAT: Efficient, Large scale and Automated Heartbeat Detection in Medaka Fish Embryos.

Marcio Soares Ferreira, Sebastian Stricker, Tomas Fitzgerald, Jack Monahan, Fanny Defranoux, Philip Watson, Bettina Welz, Omar Hammouda, Joachim Wittbrodt, Ewan Birney
{"title":"FEHAT: Efficient, Large scale and Automated Heartbeat Detection in Medaka Fish Embryos.","authors":"Marcio Soares Ferreira, Sebastian Stricker, Tomas Fitzgerald, Jack Monahan, Fanny Defranoux, Philip Watson, Bettina Welz, Omar Hammouda, Joachim Wittbrodt, Ewan Birney","doi":"10.1093/bioinformatics/btae664","DOIUrl":null,"url":null,"abstract":"<p><p>High resolution imaging of model organisms allows the quantification of important physiological measurements. In the case of fish with transparent embryos, these videos can visualise key physiological processes, such as heartbeat. High throughput systems can provide enough measurements for the robust investigation of developmental processes as well as the impact of system perturbations on physiological state. However, few analytical schemes have been designed to handle thousands of high-resolution videos without the need for some level of human intervention. We developed a software package, named FEHAT, to provide a fully automated solution for the analytics of large numbers of heart rate imaging datasets obtained from developing Medaka fish embryos in 96 well plate format imaged on an Acquifer machine. FEHAT uses image segmentation to define regions of the embryo showing changes in pixel intensity over time, followed by the classification of the most likely position of the heart and Fourier Transformations to estimate the heart rate. Here we describe some important features of the FEHAT software, showcasing its performance across a large set of medaka fish embryos and compare its performance to established, less automated solutions. FEHAT provides reliable heart rate estimates across a range of temperature-based perturbations and can be applied to tens of thousands of embryos without the need for any human intervention.</p><p><strong>Availability: </strong>Data used in this manuscript will be made available on request.</p><p><strong>Supplementary information: </strong>Supplementary data are available at Bioinformatics online.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btae664","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

High resolution imaging of model organisms allows the quantification of important physiological measurements. In the case of fish with transparent embryos, these videos can visualise key physiological processes, such as heartbeat. High throughput systems can provide enough measurements for the robust investigation of developmental processes as well as the impact of system perturbations on physiological state. However, few analytical schemes have been designed to handle thousands of high-resolution videos without the need for some level of human intervention. We developed a software package, named FEHAT, to provide a fully automated solution for the analytics of large numbers of heart rate imaging datasets obtained from developing Medaka fish embryos in 96 well plate format imaged on an Acquifer machine. FEHAT uses image segmentation to define regions of the embryo showing changes in pixel intensity over time, followed by the classification of the most likely position of the heart and Fourier Transformations to estimate the heart rate. Here we describe some important features of the FEHAT software, showcasing its performance across a large set of medaka fish embryos and compare its performance to established, less automated solutions. FEHAT provides reliable heart rate estimates across a range of temperature-based perturbations and can be applied to tens of thousands of embryos without the need for any human intervention.

Availability: Data used in this manuscript will be made available on request.

Supplementary information: Supplementary data are available at Bioinformatics online.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FEHAT:青鳉鱼胚胎中的高效、大规模自动心跳检测。
对模型生物进行高分辨率成像可以量化重要的生理测量结果。对于具有透明胚胎的鱼类,这些视频可以将心跳等关键生理过程可视化。高通量系统可提供足够的测量数据,用于对发育过程以及系统扰动对生理状态的影响进行有力的研究。然而,很少有人设计出无需人工干预就能处理数千个高分辨率视频的分析方案。我们开发了一款名为 FEHAT 的软件包,为分析大量心率成像数据集提供了全自动解决方案,这些数据集来自在 Acquifer 机器上成像的 96 孔板格式发育中的青鳉胚胎。FEHAT 使用图像分割来定义胚胎中像素强度随时间变化的区域,然后对心脏最可能的位置进行分类,并通过傅里叶变换来估算心率。在此,我们将介绍 FEHAT 软件的一些重要功能,展示其在大量青鳉鱼胚胎中的表现,并将其表现与现有的自动化程度较低的解决方案进行比较。FEHAT 可在一系列基于温度的扰动中提供可靠的心率估计值,并可应用于数以万计的胚胎,无需任何人工干预:本手稿中使用的数据可应要求提供:补充数据可在生物信息学网上获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
RUCova: Removal of Unwanted Covariance in mass cytometry data. ViraLM: Empowering Virus Discovery through the Genome Foundation Model. CVR-BBI: An Open-Source VR Platform for Multi-User Collaborative Brain to Brain Interfaces. Expert-guided protein Language Models enable accurate and blazingly fast fitness prediction. FungiFun3: Systemic gene set enrichment analysis for fungal species.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1