MR Corge: sensitivity analysis of Mendelian randomization based on the core gene hypothesis for polygenic exposures.

Wenmin Zhang, Chen-Yang Su, Satoshi Yoshiji, Tianyuan Lu
{"title":"MR Corge: sensitivity analysis of Mendelian randomization based on the core gene hypothesis for polygenic exposures.","authors":"Wenmin Zhang, Chen-Yang Su, Satoshi Yoshiji, Tianyuan Lu","doi":"10.1093/bioinformatics/btae666","DOIUrl":null,"url":null,"abstract":"<p><strong>Summary: </strong>Mendelian randomization is being utilized to assess causal effects of polygenic exposures, where many genetic instruments are subject to horizontal pleiotropy. Existing methods for detecting and correcting for horizontal pleiotropy have important assumptions that may not be fulfilled. Built upon the core gene hypothesis, we developed MR Corge for performing sensitivity analysis of Mendelian randomization. MR Corge identifies a small number of putative core instruments that are more likely to affect genes with a direct biological role in an exposure and obtains causal effect estimates based on these instruments, thereby reducing the risk of horizontal pleiotropy. Using positive and negative controls, we demonstrated that MR Corge estimates aligned with established biomedical knowledge and the results of randomized controlled trials. MR Corge may be widely applied to investigate polygenic exposure-outcome relationships.</p><p><strong>Availability and implementation: </strong>An open-sourced R package is available at https://github.com/zhwm/MRCorge.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11578597/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btae666","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Summary: Mendelian randomization is being utilized to assess causal effects of polygenic exposures, where many genetic instruments are subject to horizontal pleiotropy. Existing methods for detecting and correcting for horizontal pleiotropy have important assumptions that may not be fulfilled. Built upon the core gene hypothesis, we developed MR Corge for performing sensitivity analysis of Mendelian randomization. MR Corge identifies a small number of putative core instruments that are more likely to affect genes with a direct biological role in an exposure and obtains causal effect estimates based on these instruments, thereby reducing the risk of horizontal pleiotropy. Using positive and negative controls, we demonstrated that MR Corge estimates aligned with established biomedical knowledge and the results of randomized controlled trials. MR Corge may be widely applied to investigate polygenic exposure-outcome relationships.

Availability and implementation: An open-sourced R package is available at https://github.com/zhwm/MRCorge.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MR Corge:基于核心基因假说的孟德尔随机化对多基因暴露的敏感性分析。
摘要:目前正在利用孟德尔随机法来评估多基因暴露的因果效应,其中许多基因工具都受到横向多效性的影响。现有的检测和校正水平多效性的方法有一些重要的假设,这些假设可能无法实现。基于核心基因假设,我们开发了 MR Corge,用于对孟德尔随机化进行敏感性分析。MR Corge 可识别出少数几个更有可能影响在暴露中具有直接生物学作用的基因的假定核心工具,并根据这些工具获得因果效应估计值,从而降低水平多效性的风险。通过使用阳性和阴性对照,我们证明了 MR Corge 的估计值与已有的生物医学知识和随机对照试验的结果一致。MR Corge可广泛应用于研究多基因暴露-结果关系:开源 R 软件包可在 https://github.com/zhwm/MRCorge.Supplementary 上获取:补充数据可在 Bioinformatics online 上获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Phasing Nanopore genome assembly by integrating heterozygous variations and Hi-C data. STRprofiler: efficient comparisons of short tandem repeat profiles for biomedical model authentication. Virtual Tissue Expression Analysis. Fast Polypharmacy Side Effect Prediction Using Tensor Factorisation. Lefser: Implementation of metagenomic biomarker discovery tool, LEfSe, in R.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1