Optimization of percutaneous intervention robotic system for skin insertion force.

IF 2.3 3区 医学 Q3 ENGINEERING, BIOMEDICAL International Journal of Computer Assisted Radiology and Surgery Pub Date : 2024-11-08 DOI:10.1007/s11548-024-03274-0
Benfang Duan, Biao Jia, Cheng Wang, Shijia Chen, Jun Xu, Gao-Jun Teng
{"title":"Optimization of percutaneous intervention robotic system for skin insertion force.","authors":"Benfang Duan, Biao Jia, Cheng Wang, Shijia Chen, Jun Xu, Gao-Jun Teng","doi":"10.1007/s11548-024-03274-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Percutaneous puncture is a common interventional procedure, and its effectiveness is influenced by the insertion force of the needle. To optimize outcomes, we focus on reducing the peak force of the needle in the skin, aiming to apply this method to other tissue layers.</p><p><strong>Methods: </strong>We developed a clinical puncture system, setting and measuring various variables. We analyzed their effects, introduced admittance control, set thresholds, and adjusted parameters. Finally, we validated these methods to ensure their effectiveness.</p><p><strong>Results: </strong>Our system meets application requirements. We assessed the impact of various variables on peak force and validated the effectiveness of the new method. Results show a reduction of about 50% in peak force compared to the maximum force condition and about 13% compared to the minimum force condition. Finally, we summarized the factors to consider when applying this method.</p><p><strong>Conclusion: </strong>To achieve peak force suppression, initial puncture variables should be set based on the trends in variable impact. Additionally, the factors of the new method should be introduced using these initial settings. When selecting these factors, the characteristics of the new method must also be considered. This process will help to better optimize peak puncture force.</p>","PeriodicalId":51251,"journal":{"name":"International Journal of Computer Assisted Radiology and Surgery","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Assisted Radiology and Surgery","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11548-024-03274-0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Percutaneous puncture is a common interventional procedure, and its effectiveness is influenced by the insertion force of the needle. To optimize outcomes, we focus on reducing the peak force of the needle in the skin, aiming to apply this method to other tissue layers.

Methods: We developed a clinical puncture system, setting and measuring various variables. We analyzed their effects, introduced admittance control, set thresholds, and adjusted parameters. Finally, we validated these methods to ensure their effectiveness.

Results: Our system meets application requirements. We assessed the impact of various variables on peak force and validated the effectiveness of the new method. Results show a reduction of about 50% in peak force compared to the maximum force condition and about 13% compared to the minimum force condition. Finally, we summarized the factors to consider when applying this method.

Conclusion: To achieve peak force suppression, initial puncture variables should be set based on the trends in variable impact. Additionally, the factors of the new method should be introduced using these initial settings. When selecting these factors, the characteristics of the new method must also be considered. This process will help to better optimize peak puncture force.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
优化经皮介入机器人系统的皮肤插入力。
目的:经皮穿刺是一种常见的介入手术,其效果受穿刺针插入力的影响。为了优化疗效,我们致力于降低穿刺针在皮肤中的峰值力,并将此方法应用于其他组织层:我们开发了一套临床穿刺系统,设置并测量了各种变量。方法:我们开发了一套临床穿刺系统,设置并测量了各种变量,分析了它们的影响,引入了导入控制,设置了阈值并调整了参数。最后,我们对这些方法进行了验证,以确保其有效性:我们的系统符合应用要求。我们评估了各种变量对峰值力的影响,并验证了新方法的有效性。结果显示,与最大力条件相比,峰值力减少了约 50%,与最小力条件相比,峰值力减少了约 13%。最后,我们总结了应用这种方法时需要考虑的因素:要实现峰值力抑制,应根据变量冲击的趋势设置初始穿刺变量。结论:要实现峰值力抑制,应根据变量冲击的趋势设置初始穿刺变量,并利用这些初始设置引入新方法的因素。在选择这些因子时,还必须考虑新方法的特性。这一过程将有助于更好地优化峰值穿刺力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Computer Assisted Radiology and Surgery
International Journal of Computer Assisted Radiology and Surgery ENGINEERING, BIOMEDICAL-RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
CiteScore
5.90
自引率
6.70%
发文量
243
审稿时长
6-12 weeks
期刊介绍: The International Journal for Computer Assisted Radiology and Surgery (IJCARS) is a peer-reviewed journal that provides a platform for closing the gap between medical and technical disciplines, and encourages interdisciplinary research and development activities in an international environment.
期刊最新文献
Optimization of percutaneous intervention robotic system for skin insertion force. Correction to: Micro-robotic percutaneous targeting of type II endoleaks in the angio-suite. Automated assessment of non-technical skills by heart-rate data. Artificial intelligence-based analysis of lower limb muscle mass and fatty degeneration in patients with knee osteoarthritis and its correlation with Knee Society Score. High-quality semi-supervised anomaly detection with generative adversarial networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1