Diagnosing glaucoma progression with optical coherence tomography.

IF 3 2区 医学 Q1 OPHTHALMOLOGY Current Opinion in Ophthalmology Pub Date : 2024-11-08 DOI:10.1097/ICU.0000000000001106
Laura D Palmer, Atalie C Thompson, Sanjay Asrani
{"title":"Diagnosing glaucoma progression with optical coherence tomography.","authors":"Laura D Palmer, Atalie C Thompson, Sanjay Asrani","doi":"10.1097/ICU.0000000000001106","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose of review: </strong>Optical coherence tomography (OCT) is a widely used tool to diagnose and monitor glaucoma by objectively measuring the ganglion cell layer and the retinal nerve fiber layer (RNFL) thickness. The presence of RNFL thinning raises suspicion for glaucoma progression. Therefore, this review aims to discuss current approaches to using OCT for detecting glaucomatous change, limitations, and recent advancements.</p><p><strong>Recent findings: </strong>Previously established approaches to determining glaucomatous progression on OCT include quantitative and qualitative methods. The most common quantitative methods include event-based and trend-based analysis. Decreasing RNFL thickness or loss of the ganglion cell layer are indicative of glaucomatous changes. However, interpretation of OCT scans is strongly impacted by artifacts, which can be because of epiretinal membrane or posterior vitreous detachment. Race and aging also may impact interpretation of RNFL progression. More recent research focuses on loss of the RNFL because of the effects of systemic conditions. Given the limitations in the current approaches, recent advancements indicate a promising role for artificial intelligence in determining true glaucomatous progression.</p><p><strong>Summary: </strong>This review highlights current approaches to identifying glaucoma progression on OCT, limitations to these approaches, and the potential role for artificial intelligence.</p>","PeriodicalId":50604,"journal":{"name":"Current Opinion in Ophthalmology","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Ophthalmology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/ICU.0000000000001106","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose of review: Optical coherence tomography (OCT) is a widely used tool to diagnose and monitor glaucoma by objectively measuring the ganglion cell layer and the retinal nerve fiber layer (RNFL) thickness. The presence of RNFL thinning raises suspicion for glaucoma progression. Therefore, this review aims to discuss current approaches to using OCT for detecting glaucomatous change, limitations, and recent advancements.

Recent findings: Previously established approaches to determining glaucomatous progression on OCT include quantitative and qualitative methods. The most common quantitative methods include event-based and trend-based analysis. Decreasing RNFL thickness or loss of the ganglion cell layer are indicative of glaucomatous changes. However, interpretation of OCT scans is strongly impacted by artifacts, which can be because of epiretinal membrane or posterior vitreous detachment. Race and aging also may impact interpretation of RNFL progression. More recent research focuses on loss of the RNFL because of the effects of systemic conditions. Given the limitations in the current approaches, recent advancements indicate a promising role for artificial intelligence in determining true glaucomatous progression.

Summary: This review highlights current approaches to identifying glaucoma progression on OCT, limitations to these approaches, and the potential role for artificial intelligence.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用光学相干断层扫描诊断青光眼进展。
审查目的:光学相干断层扫描(OCT)通过客观测量神经节细胞层和视网膜神经纤维层(RNFL)的厚度,是诊断和监测青光眼的一种广泛应用的工具。如果出现 RNFL 变薄,则需要怀疑青光眼的进展。因此,本综述旨在讨论目前使用 OCT 检测青光眼变化的方法、局限性和最新进展:以前确定 OCT 青光眼进展的方法包括定量和定性方法。最常见的定量方法包括基于事件的分析和基于趋势的分析。RNFL 厚度的减少或神经节细胞层的丧失是青光眼变化的标志。然而,OCT 扫描的判读受到伪影的严重影响,伪影可能是由于视网膜外膜或玻璃体后脱离造成的。种族和年龄也会影响对 RNFL 进展的解读。最近的研究主要集中在 RNFL 因全身性疾病而造成的损失。鉴于当前方法的局限性,最近的进展表明人工智能在确定真正的青光眼进展方面大有可为。摘要:本综述重点介绍了当前在 OCT 上识别青光眼进展的方法、这些方法的局限性以及人工智能的潜在作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.80
自引率
5.40%
发文量
120
审稿时长
6-12 weeks
期刊介绍: Current Opinion in Ophthalmology is an indispensable resource featuring key up-to-date and important advances in the field from around the world. With renowned guest editors for each section, every bimonthly issue of Current Opinion in Ophthalmology delivers a fresh insight into topics such as glaucoma, refractive surgery and corneal and external disorders. With ten sections in total, the journal provides a convenient and thorough review of the field and will be of interest to researchers, clinicians and other healthcare professionals alike.
期刊最新文献
The effect of cataract surgery on lowering intraocular pressure. Artificial intelligence in ophthalmology. A comprehensive update on over the counter artificial tears. Challenges and outcomes of cataract surgery after vitrectomy. Cataract surgery combined with glaucoma surgery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1